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Abstract

The ability of manufacturers and suppliers to adapt to changing market conditions is

crucial in today’s uncertain business environment. Having more than one sourcing or

selling channel with complementary services can be an effective strategy for firms to

enhance their operational flexibility. This dissertation thus investigates how firms can

utilize multiple channels to efficiently procure their production and service capacity

or distribute sales volumes to meet the needs of a dynamic market. It contains two

major parts:

First, in Chapters 2 and 3, we focus on the sourcing side and study how firms in

capital-intensive industries can reduce their idle capacity while maintaining a high

service level by purchasing production capacity from two supply sources. We con-

struct a dual-mode equipment procurement model (DMEP), in which an equipment

supplier provides two delivery modes to a firm: a base mode that is less expensive

but slower and a flexible mode that is faster but more expensive. The combination

of these two modes provides the firm the flexibility to mitigate demand risk at a po-

tentially lower cost. Chapter 2 presents our theoretical approach and investigates a

dynamic dual-source capacity expansion problem with consecutive leadtimes and de-

mand backlogging. We demonstrate that the flexible orders follow a state-dependent

base-stock policy; the base orders, however, follow only a partial-base-stock policy,

which lacks structure and is difficult to track. Chapter 3 then tackles this prob-

lem from a practical perspective. Compromising optimality for applicability and

efficiency, we construct a general DMEP heuristic that consists of three layers: a con-

tract negotiation layer, in which the firm chooses the best combination of leadtime

and price for each supply mode from the supply contract menu; a reservation layer,

in which the firm reserves total equipment procurement quantities through the two
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supply modes by paying the supplier a reservation fee up front before the planning

horizon starts; and an execution layer, in which the firm acquires the latest demand

information in each period and orders equipment through both supply modes. We

numerically quantify the value of the added flexibility for the firm and explore how

the optimal reservation and execution decisions would change with respect to the key

model parameters.

Second, in Chapter 4, we instead study the selling side and discuss how a large

commodity supplier should strategically allocate his limited production capacity be-

tween a fixed-price contract channel and a spot market to maximize his total sales

income. We discuss two settings: one in which the equilibrium spot price follows an

exogenous random distribution and one in which the equilibrium spot price is en-

dogenously determined by the spot demand curve and the spot supply curve, both

of which can be affected by the supplier’s capacity allocation decision. In the former

case, we find that the demand-price correlation and a risk-averse attitude are two rea-

sons for the supplier to adopt a dual-channel strategy. The supplier should allocate

more quantity to the spot channel if the contract channel demand and the spot price

are more positively correlated, and he should allocate more to the contract channel if

he is more risk-averse. In the latter setting, which further contains a contract trad-

ing stage and a spot trading stage, we show that a dual-channel policy is optimal

in the first stage if the shifting effect of the supplier’s spot allocation quantity on

the default supply curve is stronger than the shifting effect of the unfulfilled contract

channel demand on the default demand curve. Further, we demonstrate that it is

not necessarily optimal to sell all leftover quantities in the spot market during the

second stage. Using benchmark industry data, we quantify the average improvement

in profit of adopting a dual-channel strategy versus using a single contract channel

or a single spot channel through numerical analysis.

v



www.manaraa.com

Acknowledgements

First, I would like to recognize my principal advisor, Professor Feryal Erhun, for

her outstanding instruction and support throughout my doctoral study at Stanford.

Professor Erhun has been not only a great advisor and role model, but also a great

mentor and friend of mine. She introduced me to my major dissertation topic; she

guided me when I got confused with either research or life in general; she challenged

me when I was content with the status quo and reluctant to probe further for a better

outcome; she cheered for me when I demonstrated progress in my pursuit after an

arduous devotion. I shall always remember the academic journey we took together.

I would also like to thank my co-advisor, Professor Hau Lee, for the guidance

and help he provided me during these years. As a leader in our field, Professor Lee

influenced me deeply not only through his incisive understanding of both the academia

and the industry, but also through his generosity and kindness to others. Professor

Lee also taught me to be a researcher who cares about both the theoretical rigor of

his work and the positive impacts he can generate to the industry and the society.

I also want to sincerely thank Professor Warren Hausman for providing valuable

feedback on my dissertation as a reading committee member and for being a mentor

for me during my time at Stanford. His advice was instrumental for both my research

and my professional career.

Finally, I would like to express special thanks to Zizhuo Wang, Yanchong Zheng,

Tim Kraft, Sechan Oh, and Yichuan Ding, for all the help and advice they have offered

me; to Karl Kempf, Erik Hertzler, and other members of Intel TMG, for their support

and collaboration during the research project between Stanford and Intel; and to my

dear classmates, Jessica McCoy, Hugo Mora, and Danny Greenia, for going through

this challenging process together with me as my best friends.

vi



www.manaraa.com

Dedication

I would like to dedicate this effort to my wife, Wenyi Cai, and my parents, Jianguo

Peng and Gonglian Zhu. Their continuous support, encouragement, sacrifices, and

love provided the foundation upon which this dissertation was achieved.

vii



www.manaraa.com

Contents

Abstract iv

Acknowledgements vi

Dedication vii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Dynamic Dual-Source Capacity Expansion 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Managerial Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Two-Level Base-Stock Policy . . . . . . . . . . . . . . . . . . . 18

2.5.2 The Value of Dual-Sourcing . . . . . . . . . . . . . . . . . . . 19

2.5.3 The Value of Forecast Updates . . . . . . . . . . . . . . . . . 21

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Dual-Mode Equipment Procurement Heuristic 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 The Business Problem . . . . . . . . . . . . . . . . . . . . . . 28

viii



www.manaraa.com

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Dual-Mode Equipment Procurement

Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 The Forecast Revision Mechanism . . . . . . . . . . . . . . . . 34

3.3.2 The Execution Problem . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 The Reservation Problem . . . . . . . . . . . . . . . . . . . . 41

3.3.4 The Contract Negotiation Problem . . . . . . . . . . . . . . . 44

3.4 DMEP as a Decision-Support Tool . . . . . . . . . . . . . . . . . . . 44

3.4.1 Parameter Values for the Numerical Examples . . . . . . . . . 44

3.4.2 The Value of DMEP as a Decision-Support Tool . . . . . . . . 46

3.4.3 The Impact of Risk Attitude . . . . . . . . . . . . . . . . . . . 52

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Strategic Capacity Allocation 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 The Business Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Strategic Allocation under an Open Spot

Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Unlimited Contract Channel Demand . . . . . . . . . . . . . . 66

4.4.2 Stochastic Contract Channel Demand . . . . . . . . . . . . . . 67

4.4.3 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Strategic Allocation under a Closed Spot

Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Endogenous Demand Curve and

Exogenous Supply Curve . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Endogenous Demand and Supply Curves . . . . . . . . . . . . 81

4.5.3 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Conclusions 98

5.1 Major Results and Contributions . . . . . . . . . . . . . . . . . . . . 98

ix



www.manaraa.com

5.2 Directions for Future Extensions . . . . . . . . . . . . . . . . . . . . . 101

A Supplementary Discussion 103

A.1 The Case of Inventory Carry-Over . . . . . . . . . . . . . . . . . . . . 103

A.2 A High-Level Discussion on Risk Aversion . . . . . . . . . . . . . . . 105

B Proofs 108

C DMEP Algorithm Flow Chart 132

x



www.manaraa.com

List of Tables

2.1 Optimal Strategy (OS) vs. Two-Level Base-Stock Policy (TLBS) Profit

Comparison (×103; cb = 15; cf = 35; n = 2; ỹ2 = 0; % ↓ means
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Chapter 1

Introduction

1.1. Background

We are in a world where technology advancement, internet, and globalization make

the entire business environment more complex and unpredictable than ever. Aligning

supply with demand becomes a more difficult balancing act as uncertainties prevail

in the global supply chain network. Consequently, firms in both high-tech and tra-

ditional sectors face substantial challenges in efficiently managing their production

capacity as well as distribution channels to meet the service requirements of a dy-

namic market and reap the highest possible profit.

As a key determinant of the service level, equipment capacity management is

critical to the success of many firms. For manufacturers in such capital-intensive in-

dustries as the semiconductor, electronic, automotive, and pharmaceutical industries,

equipment capacity expenditures constitute about one quarter of the total revenue

and roughly two thirds of the total manufacturing costs (Hertzler 2009). Intel, for

instance, spent on average 5.3 billion USD annually on capital equipment purchase

and development from 2004 to 2009 (Intel Corporation 2009). On top of the substan-

tial costs, capacity decisions faced by these industries, especially the semiconductor

and electronic industries, are very difficult to make due to several reasons. First, the

consumer market is highly volatile. The Semiconductor Industry Association once re-

ported that global semiconductor sales in the first quarter of 2009 declined 29.9% from

the first quarter of 2008 due to the sweeping economic recession. However, sales rose

1
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47.6% in May 2010 from May 2009 when the overall economy started improving again

(Detar 2010). In recent years, the fast growth of mobile and cloud computing has

also started shifting the original market layout and further exacerbates the demand

randomness in related industries. This high level of market uncertainty together with

a very long supply leadtime of capital equipment (quarters or even years) sharply

increases the difficulty of accurate demand forecasting and capacity planning. In ad-

dition, stockouts can be very costly. A single computer chip or consumer electronic

device is usually sold at hundreds of dollars, and the indirect loss of goodwill is even

more damaging to firms’ long-term revenue. While this fact certainly underscores the

importance of avoiding shortages, it does not mean firms should always err on the

side of having idle capacity, since capacity is cumulative and any over-investment is

not only expensive but also irreversible. Therefore, the ability to respond rapidly to

the changing market demand while minimizing unnecessary capital expenditures is

both important and challenging to firms in capital-intensive industries.

On the selling side, as market dynamics become more complex, it is no longer

sufficient for a business to focus solely on its main distribution channel and overlook

opportunities for additional outlets for its product and service. Firms are identifying

increasingly diversified market platforms where they can sell products to different

groups of buyers at different times and prices, and it is important for them to lever-

age multiple distribution channels to enlarge their market reach and hedge against

potential demand and price risks. In fact, more than 80% of US retailers were already

offering multi-channel transactional capabilities in 2007 (Lovett and Anand 2007) and

this number is even higher today. While for traditional retailers a channel mix usually

involves conventional bricks-and-mortar stores, online e-commerce, and catalog sales,

this is not the only type of channel choice that firms may encounter. Distribution

channels may sometimes refer to the different contract formats in which firms interact

with their customers. For instance, commodity suppliers such as Rio Tinto face the

distribution choice between a fixed-price contract channel and a real-time spot mar-

ket (Lee 2007); hotel chains and rental car firms can distribute their capacity either

through their own websites or anonymous discount aggregators such as Priceline.com.

For all these businesses it is crucial to determine the optimal split of sales volumes

among different distribution channels to maximize their potential profits.
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1.2. Research Overview

In this dissertation, we address the aforementioned challenges by investigating how

firms can operate multiple channels to build their production capacity or distribute

sales volumes to meet the needs of an ever-changing market. It consists of two ma-

jor parts: In the first part (Chapters 2 and 3), we focus on the sourcing side and

study how firms in capital-intensive industries can efficiently purchase their produc-

tion equipment through two different supply channels with complementary leadtimes

and prices. In the second part (Chapter 4), we switch to the selling side and investi-

gate how a commodity supplier can utilize both a fixed-price contract channel and a

spot channel to optimally distribute his sales volumes. Below are some more details.

In Chapter 2, we study a finite-horizon, periodic-review, dual-source equipment

capacity expansion problem with demand backlogging. In each period, the manufac-

turer acquires updated demand information and procures manufacturing equipment

from two suppliers with different leadtimes and prices: a base supplier which is inex-

pensive but slow and a flexible supplier which is fast but expensive. The combination

of these two sources provides the firm the flexibility to mitigate demand risk at a

potentially lower cost. We prove that even in the simplest setting, i.e., when the lead-

times are consecutive and zero-one, only the flexible orders follow a state-dependent

base-stock policy. The base orders, on the other hand, follow only a partial-base-

stock policy; the expand-to capacity position for the base source could be decreasing

in the initial capacity level due to the effect of backlogging. We thus conclude that

the dynamic dual-source capacity expansion problem with backorders is inherently

different and more complex than its inventory counterpart as well as the dynamic

dual-source capacity expansion problem with lost sales, and we call for solutions to

this rather complex problem.

In Chapter 3, we propose a dual-mode equipment procurement (DMEP) frame-

work as a direct response to the challenge posed in Chapter 2. The DMEP framework

combines the same dual-channel procurement strategy with capacity options and a

detailed forecast revision mechanism. It consists of three layers: a strategic contract

negotiation layer, in which the firm chooses the best combination of leadtime and price

for each supply mode from the contract menu, a tactical reservation layer, in which

the firm reserves total equipment procurement quantities from the two supply modes
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by paying the supplier a reservation fee up front before the planning horizon starts,

and an operational execution layer, in which the firm acquires the latest demand in-

formation in each period and orders equipment from the two supply modes following

a rolling-horizon algorithm. With a comprehensive numerical analysis, we quantify

the value of the added flexibility of dual-mode equipment procurement for the firm.

Implementation of this approach has leveraged model structure and details to provide

the types of sensitivity analysis needed by decision-makers to understand and take

advantage of the subtleties of this improvement in the capital equipment acquisition

process. The annual savings on capital procurement at Intel due to implementing

DMEP are estimated to exceed tens of millions of dollars.

In Chapter 4, we study a commodity-selling problem in which a large commodity

supplier strategically allocates his production capacity between a fixed-price con-

tract channel and a spot channel to maximize his total sales income. We discuss

two settings: one in which the equilibrium spot price follows an exogenous random

distribution (open spot market) and one in which the equilibrium spot price is en-

dogenously determined by the spot demand curve and the spot supply curve, both of

which can be affected by the supplier’s capacity allocation decision (closed spot mar-

ket). We identify the supplier’s optimal allocation policies under both circumstances

and demonstrate how the optimal decisions change with the key model parameters.

For the open spot market setting, we find that the demand-price correlation and a

risk-averse attitude are two reasons for the supplier to adopt a dual-channel strategy.

The supplier should allocate more quantity to the spot channel if the contract chan-

nel demand and the spot price are more positively correlated, and he should allocate

more to the contract channel if he is more risk-averse. For the closed spot market

setting which further includes a contract trading stage and a spot trading stage, we

show that a dual-channel policy is optimal in the first stage if the shifting effect of

the supplier’s spot allocation quantity on the default supply curve is stronger than

the shifting effect of the unfulfilled contract channel demand on the default demand

curve. Further, we demonstrate that it is not necessarily optimal to sell all leftover

quantities in the spot market during the second stage. We also quantify the aver-

age improvement in profit of adopting a dual-channel strategy versus using a single

contract channel or a single spot channel through numerical analysis. Although this
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research is motivated by the business practice in the commodity industry, the model-

ing methodology and managerial insights are certainly applicable to other industries

with similar channel choices to make.

The layout of the dissertation is as follows: we discuss the related literature,

present the details of each model, and demonstrate the corresponding results in Chap-

ters 2 through 4. We conclude the dissertation in Chapter 5, summarizing the major

contributions and indicating future research directions. All the proofs are provided

in the appendix.
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Chapter 2

Dynamic Dual-Source Capacity

Expansion Problem with

Backorders

2.1. Introduction

From 2004 to 2009, as a leader in the semiconductor industry, Intel has spent on

average 5.3 billion USD annually on capital equipment purchase and development

(Intel Corporation 2009), an amount greater than the GDP of 51 countries in the

world in 2009 (World Bank 2009). In fact, in capital-intensive industries (such as

the semiconductor, electronic, automotive, and pharmaceutical industries), capital

expenditures often occupy 20-30% of the total revenue, up to 50% of the company’s

gross margin, and about two-thirds of the manufacturing costs (Hertzler 2009). While

the right volume of capital equipment guarantees the smoothness and continuity of

the production process, the inappropriate purchase of this equipment may lead to

either idle capacity or unsatisfied demand, both of which can result in a considerable

loss of profit. Thus, choosing the right amount of equipment to purchase is a vital

decision for managers in these industries.

Unfortunately, this is not a straightforward decision. Due to rapid technological

change and fierce market competition, demand faced by these industries, in particu-

lar the semiconductor and electronics industries, is highly uncertain. Purchasing the

6
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proper amount of manufacturing equipment requires an accurate demand forecast,

which is difficult to obtain. Additionally, the leadtime (including production, trans-

portation, and installation) of manufacturing equipment can be as long as months, or

even years, which increases the difficulty of demand forecasting, and hence aggravates

the risk of advance purchase. Moreover, unlike excess inventory of products, which

may still be used to satisfy future demand, over-investment in manufacturing equip-

ment is irreversible and idle equipment may continue to be idle in the future even if

no additional equipment is purchased. This cumulative property alone implies that

classical inventory control strategies may not be applicable to managing equipment

capacity.

This chapter aims to study the aforementioned problem. We take the perspec-

tive of a manufacturer in a capital-intensive industry and analyze a periodic-review,

finite-horizon, dual-source capacity expansion problem with demand forecast updates

(capacity here refers to the capacity of manufacturing equipment). Dual-sourcing

strategies are commonly adopted in inventory management for mitigating supply costs

and risks; here, we introduce such strategies to the capacity expansion environment.

We suppose the manufacturer is starting mass production of a given product and has

to build capacity over time as demand for his product increases and better market

information becomes available. He can order capacity from two suppliers, a base sup-

plier and a flexible supplier, with different leadtimes and prices. At each decision

period, the manufacturer chooses the amount of capacity to order from each supplier

given the latest demand information, with the goal of maximizing his expected total

profit-to-go. Unmet demand is fully backlogged.

2.2. Literature Review

The dual-sourcing problem has been studied in the context of inventory since the

early 1960s. The extant literature establishes that for the case of consecutive lead-

times, a two-level (modified) base-stock policy is optimal (Daniel 1963, Fukuda 1964,

Whittemore and Saunders 1977, Yazlali and Erhun 2007). Yan et al. (2003) and

Sethi et al. (2001) investigate this problem under forecast updates and show that
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a modified base-stock policy continues to be optimal. For the more general noncon-

secutive leadtimes case, the optimal policy can be quite complex and lacks structure

(Scheller-Wolf and Tayur 1998, Feng et al. 2006, Yazlali and Erhun 2009).

Despite the existence of literature on the dual-sourcing inventory problem, re-

search on the dual-sourcing capacity problem is rare. Capacity behaves very differ-

ently from inventory in that it can be repeatedly used from one period to another;

hence classical inventory management policies may not be applicable to capacity

planning problems. Capacity decisions have been extensively analyzed under single-

sourcing (see Van Mieghem 2003 for a review of this literature). However, to the

best of our knowledge, Chao et al. (2009) and Peng et al. (2010) are the only pa-

pers that study the dual-sourcing capacity problem. Chao et al. (2009) investigate

a dual-source setting with consecutive leadtimes where demand in excess of capac-

ity is lost; they establish that the optimal capacity expansion policy with the fast

(flexible) source is base-stock. The authors further demonstrate that when the ca-

pacity obsolescence rate is deterministic, the optimal policy for capacity expansion

through the slow (base) source is also base-stock. We study a problem similar to

Chao et al.’s deterministic-capacity-obsolescence-rate setting. However, our model

differs from theirs in two ways: (i) the demand in excess of capacity is backlogged

instead of lost, and (ii) we incorporate a forecast updating process. Backlogging is

a more realistic assumption for many industries, especially in manufacturing, but it

also immediately escalates the complexity of the problem by adding an extra state

variable to the dynamic programming formulation. As a result, we show that a base-

stock policy is no longer optimal for the base source. Forecast updating allows us to

investigate the value of information, which is a critical component due to extremely

long leadtimes associated with capacity investment decisions. Interested readers may

refer to Peng et al. (2010) (or Chapter 3 of this dissertation) for a heuristic solution

to a general dual-source capacity expansion problem.

The rest of this chapter is arranged as follows: in Sections 2.3 and 2.4, we construct

the model and derive the analytical results. We show that, even in the simplest setting

possible (i.e., when leadtimes are consecutive and zero-one) the capacity expansion

problem is categorically different than its inventory counterpart and the irreversibility

of the capacity investment decisions complicates the analysis significantly. Section 2.5
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provides additional managerial insights through numerical analysis. Section ?? briefly

discusses an extension where inventory carry-over is allowed. Section 2.6 concludes

this chapter. Proofs of all results are in the appendix.

2.3. Model Definition

We consider a finite-horizon, periodic-review, dual-source capacity expansion model

with demand backlogging and forecast updates. A manufacturer needs an efficient

equipment procurement strategy to optimally match his production capacity with

growing but fluctuating demand over time. During each period n, n = 0, 1, · · · , N ,

he orders capacity from two suppliers: an inexpensive-but-slow base supplier and a

fast-but-expensive flexible supplier. He does so to maximize his total expected profit

over the entire planning horizon. We purposely analyze the simplest setting; i.e.,

we assume consecutive leadtimes. Furthermore, the base supplier’s leadtime is one

period, thus the flexible supplier delivers instantaneously. The unit price for the base

supplier is cb and for the flexible supplier is cf > cb.

Before introducing the details of our model, we first explain the underlying mar-

ket demand process. Demand Dn in each period n is composed of three parts: a

deterministic component µn, the initial market information ε1

n
, and the final market

information ε2

n
. The manufacturer knows µn, and observes ε1

n
at the beginning of

period n and ε2

n
at the end of period n. Both ε1

n
and ε2

n
are random variables. Market

information for different periods and different market information in the same period

are all assumed to be independent of each other. Given the above assumptions, Dn

can be expressed as Dn = g(ε1

n
, ε2

n
, µn) where g(·) is any Borel-measurable function.

This simple demand structure fits into the classical martingale model of forecast

evolution (MMFE) (Hausman 1969, Heath and Jackson 1994, Graves et al. 1986).

Two commonly used functions are the additive form Dn = ε1

n
+ ε2

n
+ µn and the

multiplicative form Dn = ε1

n
ε2

n
µn. This demand model allows us to easily capture

demand forecast updates ; we do so in the manner of Sethi et al. (2001).

The manufacturer determines the optimal amount of equipment to order from

both suppliers at each period n. The sequence of events is as follows (Figure 2.1): (i)

At the beginning of period n, the manufacturer observes the current capacity position
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xn + Bn−1 where xn is his on-hand capacity and Bn−1 is the on-order capacity from

the base supplier in period n − 1. He also observes the initial market information

ε1

n
and any backlogged demand yn from the previous period. (ii) The manufacturer

places a flexible order Fn at unit price cf and a base order Bn at unit price cb from the

two suppliers, respectively. Note that in period 0 only base orders are placed since

demand will not materialize until period 1; and in period N only flexible orders are

placed since this is the last period in the selling horizon. (iii) Orders Fn and Bn−1

arrive. (iv) The final market information ε2

n
is revealed and demand Dn is realized.

(v) Given the on-hand equipment capacity xn + Bn−1 + Fn, production is carried out

to satisfy demand at a unit profit margin of pn. Without loss of generality, we assume

each unit of capacity can be used to process only one product every period. (vi) Any

unsatisfied customer demand yn+1 is backlogged. Note that when base orders are

placed for period n (Bn−1), the buyer still faces a lot of demand uncertainty (ε2

n−1
,

ε1

n
, and ε2

n
). However, he has much improved demand information (both in terms

of demand realization ε2

n−1
and an updated forecast ε1

n
) with the flexible source Fn.

As such, our demand structure does not limit the value of flexible source to demand

realizations, but also captures forecast updates. That is, when a large demand forecast

update ε1

n
is observed, the flexible source can be used to dampen the risk of capacity

underage.

  Period 0 Period n

+  observed  
 observed  

 updated 
Orders  and placed 

Order arrives 
Order  arrives 

 observed 
Demand realized 
Production exercised  
Unsatisfied demand  backlogged 

 

 Period N

Figure 2.1: Sequence of Events in the Planning Horizon

There are several cost and revenue parameters that affect the manufacturer’s

decisions. We assume that the manufacturer’s unit profit margin pn is decreasing

in n, hence it is more profitable to satisfy demand earlier rather than later. Since

we allow for backorders, the decreasing margin also functions as the backlog penalty.

On-hand capacity incurs unit holding/maintenance cost ch per period. There is zero
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salvage value for on-hand capacity after the horizon ends. This can be justified

by the fact that leading manufacturers do not cheap-sell their idle capacity for fear

of revealing crucial technology to competitors. Any unsatisfied demand after the

terminal period N incurs an additional unit penalty cu, which may be due to the

fact that an expensive alternative source is used to satisfy this demand. As our

goal is to understand the optimal tactical level capacity decisions, we suppress the

executional level inventory problem and assume that production in a period will not

exceed demand. We provide two justifications for this assumption: 1. Many firms

(such as Dell Inc.) in high-tech industry consider it especially risky to carry inventory

and struggle to keep their stock level as low as possible; 2. Even for those that do

maintain a constant safety stock level, production would essentially be built-to-order

had that constant level been removed. However, we do have a brief discussion about

an inventory carry-over scenario in Section A.1. We assume that all random variables

have finite mean and variance, and we impose a discount factor δ, 0 < δ < 1, per

period.

The sequential decision problem of choosing the optimal Bn and Fn for all n

can be formulated as a dynamic programming model. To simplify the notation, we

introduce a new state variable x̃n as the capacity position at the beginning of period

n, which is defined as x̃n = xn + Bn−1. The other state variables are yn, the unmet

demand from last period, and �1

n
, the observed initial market information at period

n (ε1

n
= �1

n
). We construct the (N + 1)-stage dynamic programming model as follows

(n = 0, 1, · · · , N):

Jn(x̃n, yn, �
1

n
) = max

Bn,Fn

E[pn min{gn(�1

n
, ε

2

n
, µn) + yn, x̃n + Fn}− cbBn − cfFn

− ch(x̃n + Fn) + δJn+1(x̃n+1, yn+1, ε
1

n+1
)] (2.3.1)

subject to Bn ≥ 0, Fn ≥ 0, and JN+1(·) = −cuyN+1. In the objective function of

(2.3.1), the first term denotes the profit; the second and the third terms are the

base and flexible capacity ordering costs; the fourth term captures the holding cost

of the on-hand capacity; and the last term is the discounted profit-to-go. In the

final period N , the manufacturer incurs a penalty cost for any unsatisfied demand at

the end of the planning horizon. The states are updated according to the following
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equations: capacity position x̃n+1 = x̃n + Bn + Fn where x̃0 = 0; unmet demand

yn+1 = (yn + gn(�1

n
, ε2

n
, µn) − (x̃n + Fn))+ where y1 = 0 and we use the convention

(x)+ for max{x, 0}.
Next, we analyze this dynamic program to define a procurement strategy for the

manufacturer.

2.4. Analytical Results

We have formulated a dual-source capacity expansion model with demand forecast

updates. In order to analyze the dynamic program, we must first structure the forecast

update process. To that end, we assume that demand Dn is in additive form, that is,

Dn = gn(ε1

n
, ε

2

n
, µn) = ε

1

n
+ ε

2

n
+ µn.

The additive form is commonly used in the literature; e.g., Gallego and Özer (2001),

Chen and Lee (2009). With this form, we can further simplify the model by combining

the unmet demand yn with the initial market information ε1

n
, both of which are

revealed before the ordering decision is made. We denote this new term ỹn = yn + ε1

n

as the modified backorder level. We also update the decision variables and work with

expand-to capacity positions, x̃�
n

= x̃n + Fn and x̃��
n

= x̃�
n

+ Bn. As a result, the

original model can be re-written as follows:

Jn(x̃n, ỹn) = max
x̃n≤x̃�n≤x̃��n

Vn(x̃n, ỹn, x̃
�
n
, x̃

��
n
),

where

Vn(x̃n, ỹn, x̃
�
n
, x̃

��
n
) = E

�
pn min

�
ỹn + ε

2

n
+ µn, x̃

�
n

�
− cb(x̃

��
n
− x̃

�
n
)− cf (x̃

�
n
− x̃n)

− chx̃
�
n

+ δJn+1(x̃
��
n
, yn+1 + ε

1

n+1
)
�

(2.4.1)

for n = 0, 1, · · · , N ; yn+1 = (ỹn + ε2

n
+ µn − x̃�

n
)+; and JN+1(·) = −cuyN+1.

To determine the optimal capacity expansion policy for the above model, we first

need to establish some structural properties of the objective function in (2.4.1).
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Lemma 2.4.1. Jn(x̃n, ỹn) = J̃n(x̃n, ỹn) + Gn(ỹn) where

Gn(ỹn) = pnỹn + E
�

N�

k=n+1

δ
k−n

pkε
1

k

�
+ E

�
N�

k=n

δ
k−n

pk(ε
2

k
+ µk)

�
,

J̃n(x̃n, ỹn) = max
x̃n≤x̃�n≤x̃��n

E
�
− (pn − δpn+1)(ỹn + ε

2

n
+ µn − x̃

�
n
)+ − cb(x̃

��
n
− x̃

�
n
)

− cf (x̃
�
n
− x̃n)− chx̃

�
n

+ δJ̃n+1(x̃
��
n
, yn+1 + ε

1

n+1
)
�
, (2.4.2)

for n = 0, 1, · · · , N ; yn+1 = (ỹn + ε2

n
+ µn − x̃�

n
)+; pN+1 = 0 and J̃N+1(·) = −cuyN+1.

By Lemma 2.4.1, Jn(x̃n, ỹn) is the summation of J̃n(x̃n, ỹn) and a linear function

of ỹn. This transformation is useful since the second term is independent of x̃n and

hence does not affect the capacity decision. Therefore, the two stochastic decision

problems defined by Jn(·, ·) and J̃n(·, ·) should (potentially) obey the same concavity

structure and have the same optimal solution.

Lemma 2.4.2. For all n, J̃n(x̃n, ỹn) is decreasing in ỹn and concave in (x̃n, ỹn). Also,

the objective function in Equation (2.4.2) is concave in (x̃n, ỹn, x̃
�
n
, x̃��

n
).

Proposition 2.4.3. Jn is concave in (x̃n, ỹn); the objective function Vn is concave in

(x̃�
n
, x̃��

n
) for any given x̃n and ỹn.

The joint concavity of the objective function of the dual-sourcing model in x̃n and

ỹn enables us to derive our next result.

Proposition 2.4.4. For the flexible source, a state-dependent base-stock policy is

optimal.

Proposition 2.4.4 demonstrates that a well-behaved structural policy exists for the

flexible source. However, the base-stock policy is not necessarily optimal for the base

source. Defining SF

n
(ỹn) as the optimal base-stock level for the flexible source and

SB

n
(ỹn) ≥ SF

n
(ỹn) as the optimal partial-base-stock level for the base source, we can

prove the optimality of a partial-base-stock policy for the base source.

Proposition 2.4.5. For the base source, there exists a partial-base-stock policy with

parameter SB

n
(ỹn) satisfying SB

n
(ỹn) ≥ SF

n
(ỹn) such that:
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(i) if x̃n ≤ SF

n
(ỹn), it is optimal to expand the capacity position to SB

n
(ỹn);

(ii) if SF

n
(ỹn) < x̃n ≤ SB

n
(ỹn), the optimal expand-to capacity position depends on

x̃n and ỹn;

(iii) if x̃n > SB

n
(ỹn), then it is optimal not to order from the base source.

Figure 2.2 graphically demonstrates how the optimal expand-to capacity levels

of the base and flexible sources change with the cost parameters as well as with

the initial capacity position. The figure displays results for n = 2, but the insights

derived are applicable to all periods. In each of the four graphs, the x-axis denotes the

initial capacity position x̃2; the y-axis denotes the modified backorder level ỹ2; and

the vertical axis represents the optimal expand-to capacity positions for both supply

sources with respect to each state (x̃2, ỹ2). We fix the base ordering cost cb = 15 in

all cases and change the flexible ordering cost cf . In Figure 2.2(a), we set cf = 18

and observe that SF

2
(0) = 18, SB

2
(0) = SB

2
(0) = 29. This is a special case where a

state-dependent base-stock policy is optimal for both the flexible and base sources.

Sufficient flexible capacity is ordered due to the relatively low flexible cost, hence

(almost) no demand will ever be backlogged into the next period, which leads to the

optimality of a base-stock policy for the base source. By gradually increasing the

flexible ordering cost cf in Figures 2.2(b)-2.2(d), we observe that for medium values

of initial capacity position x̃2, the state-dependent base-stock policy fails. The more

we increase the gap between the unit prices, the more this failure becomes prominent.

Furthermore, the optimal expand-to capacity position for the base source may actually

decrease in the initial capacity position. When the flexible ordering cost is high, the

consequently insufficient amount of flexible orders may cause backorders; nevertheless,

the higher the initial capacity level, the more of these potential backorders can be

eliminated in the current period, thus decreasing the required capacity position for

the next period.

The failure of the optimality of a state-dependent base-stock policy for the base

source is a stark departure from the related inventory literature and is counterintuitive

at first. In the capacity expansion setting, the cumulative capacity automatically

serves as an additional source. The existence of this source is not consequential when

there are no backorders as in Chao et al. (2009). However, if there are backorders,
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(a) cb = 15, cf = 18
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(b) cb = 15, cf = 35
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(c) cb = 15, cf = 45
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(d) cb = 15, cf = 65

Figure 2.2: Optimal Expand-to Levels under Different Flexible Ordering Costs for
n = 2 (N = 3, �p = [p1, p2, p3] = [60, 50, 40], ch = 4, cu = 10, µ = [µ1, µ2, µ3] =
[10, 17, 30], ε1

n
and ε2

n
for every period n are independent and identically distributed

and satisfy a discrete uniform distribution on [−2, 2], and δ = 0.98)

then this source acts as a fictitious delivery mode for which the manufacturer even

does not have to place an order. As such, it can be thought as a delivery mode

with a leadtime of −1. Therefore, even a dual-source problem with consecutive zero-

one leadtimes acts as a multi-source problem. With this interpretation, our result is

consistent with Feng et al. (2006), where the authors show that only the fastest two

modes (in our case the fictitious mode and the flexible source which is consecutive
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with it) have a base-stock policy. Note that the modified backorder level by definition

includes the initial market information (�1

n
). Thus, the initial market information can

also contribute to the observation above. Having said that, even when we eliminate

this additional information, the results and observations remain unchanged.

Even if there are certain ranges of x̃n in which an optimal base-stock policy exists

(as in Figure 2.2(b)), the base-stock level SF

n
(ỹn) for the flexible source and the

partial-base-stock level SB

n
(ỹn) for the base source are not trivial to calculate. We

first observe from the figure that both SF

n
(ỹn) and SB

n
(ỹn) are weakly increasing in ỹn;

furthermore, our next proposition establishes certain linear relations that can further

simplify the derivation of SF

n
(ỹn) and SB

n
(ỹn):

Proposition 2.4.6. The base-stock level SF

n
(ỹn) for the flexible source and the partial-

base-stock level SB

n
(ỹn) for the base source satisfy SF

n
(ỹn) = SF

n
(0) + ỹn, SB

n
(ỹn) =

SB

n
(0) if ỹn ≤ SB

n
(0)− SF

n
(0), n = 1, 2, · · · , N − 1; and SF

N
(ỹN) = SF

N
(0) + ỹN .

Proposition 2.4.6 states that when the modified backorder level ỹn is lower than

a certain value (ỹn ≤ SB

n
(0) − SF

n
(0)), the flexible source base-stock level SF

n
(ỹn) is

simply the summation of ỹn and a constant SF

n
(0) (hence is linearly increasing in ỹn),

and that the base source partial-base-stock level SB

n
(ỹn) remains constant. We can

observe this fact by revisiting Figure 2.2(b). In accordance with Proposition 2.4.6,

SF

n
(ỹn) increases linearly and SB

n
(ỹn) stays constant as ỹn increases until the two levels

coincide, after which point they increase together nonlinearly.

In Proposition 2.4.5, we only claim that for a general N -period problem, the

optimal base expand-to position depends on the initial capacity level; Figure 2.4.5

further demonstrates that there are cases where the base expand-to position decreases

in the initial capacity level. Proposition 2.4.7 below formalizes this observation for a

two-period case.

Proposition 2.4.7. For a special case with two periods only, i.e., N = 2, we have:

(i) J̃2(x̃2, ỹ2) is supermodular;

(ii) The first period objective function1 is submodular in (x̃�
1
, x̃��

1
);

1Refer to the proof for a rearrangement of the objective function.
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(iii) For SF

1
(ỹ1) < x̃1 ≤ SB

1
(ỹ1), the optimal base expand-to capacity position x̃��

1

decreases in x̃1.

Before concluding this section, we make an observation about the single-source

capacity expansion problem with demand backlogging. Interestingly, for even this

case, the optimal strategy may lack structure:

Corollary 2.4.8. A state-dependent base-stock policy is optimal for the single-source

capacity expansion problem with a leadtime L = 0 and demand backlogging. However,

this result cannot be extended for a leadtime L > 0.

Again, this result is quite counterintuitive, since in the dynamic inventory control

problem with demand backlogging, we can easily convert the positive leadtime case

to the zero leadtime case by defining inventory position (on-hand inventory plus on-

order inventory) as the new state variable and using leadtime demand to replace the

original single-period demand. By doing so, one can reestablish the optimality of

the base-stock policy. Unfortunately, this method ceases to apply in the capacity

expansion setting. In fact, for the single-source capacity expansion problem with

demand backlogging and a leadtime of L (> 0) periods, there need to be L + 2 state

variables in the dynamic programming formulation: one state for the backlogged

demand from previous period; one state for the on-hand capacity at the beginning of

the current period; and L states for the on-order capacity that is still in the pipeline

and will arrive within the next L periods. The reason is that due to the cumulative

property of tool capacity, in order to keep track of the backlogged demand for a

certain period, the backlogged demand at each of the previous periods also has to

be recorded. This implies that one has to know the precise capacity level for every

period within the leadtime duration. With L+1 state variables denoting the capacity

positions for different periods, no base-stock type policy would exist.

forecasting lead time

mean forecast
evolution

forecasting
variance

024

range forecast

lead time1 0 1 2 n

base stock
policy optimal

base stock policy not optimal
the fictitious
mode

Figure 2.3: The Optimality of Base-Stock Policy in Single-Source Capacity Expansion
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There is another intuitive explanation for why a base-stock policy is not optimal

for the case of positive leadtime. In the capacity expansion setting, the cumulated

capacity so far automatically serves as a fictitious delivery mode with leadtime −1—

the order arrives even before it is placed. Therefore, a single-source capacity expansion

problem can always be interpreted as a multi-source inventory problem with one −1-

leadtime delivery mode. As we have already introduced, Feng et al. (2006) show that

for multi-source consecutive-leadtime inventory control problems, only the fastest two

modes have base-stock policies. So, if the single source has a zero leadtime, which

is consecutive with −1, then a base-stock policy should be optimal. If however the

single source has a positive (L > 0) leadtime, then we can insert several imaginary

supply modes (with leadtimes 0, 1, · · · , L−1) to transform the problem into one with

consecutive modes by setting the cost for any imaginary mode to be sufficiently high

(so that no optimal policy would issue orders to the imaginary modes). And Feng et

al. (2006) now tell us that a base stock policy is generally not optimal for this single

source. The explanation is summarized in Figure 2.3.

2.5. Managerial Insights

In the above section we presented some important analytical properties of the dual-

source capacity expansion problem. In this section, we generate additional managerial

insights through numerical analysis. Specifically, we examine the performance of a

two-level-base-stock heuristic, the value of having dual capacity sources, and the

value of having demand forecast updates. The benchmark parameter values for all

experiments are set to the same as in Figure 2.2.

2.5.1 Two-Level Base-Stock Policy

We notice that when cf = 35 in Figure 2.2(b), both the width of the middle region

and the decreasing trend are mild, and the ordering policy for the base source is

approximately base-stock – S̄B

n
(0)(=31) and SB

n
(0)(=30) are very close to each other.

Table 2.1 below shows that under this circumstance by following a two-level base-

stock policy with base-stock levels 16 and 31, instead of following the optimal ordering

policy, the manufacturer sacrifices only a small portion of profit. Similar results are
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observed as we vary the value of cf between 15 and 35.

Table 2.1: Optimal Strategy (OS) vs. Two-Level Base-Stock Policy (TLBS) Profit
Comparison (×103; cb = 15; cf = 35; n = 2; ỹ2 = 0; % ↓ means percentage profit
decrease)

init capacity 17 18 19 20 21 22 23 24 25 26 27

OS 1.420 1.435 1.442 1.449 1.456 1.463 1.470 1.477 1.484 1.491 1.498

TLBS 1.418 1.431 1.438 1.445 1.452 1.459 1.466 1.473 1.480 1.487 1.494

(% ↓) 0.14% 0.28% 0.28% 0.28% 0.27% 0.27% 0.27% 0.27% 0.27% 0.27% 0.27%

Remark. When faced with moderate flexible ordering cost, a capacity manager can

actually follow a two-level state-dependent base-stock policy (characterized by the

base-stock level SF

n
(ỹn) for flexible source and the base-stock level S̄B

n
(ỹn) for base

source) when ordering from the two sources. This will largely simplify the decision

making process while compromising only a small amount of profit. Meanwhile, if the

demand in each period is increasing stochastically at a fast enough rate so that the

partial-base-stock level for the base source during period n is lower than the base-

stock level for the flexible source in period n + 1, then on the optimal path the firm

will always be operating within the well-behaved region where a two-level base-stock

policy is optimal.

2.5.2 The Value of Dual-Sourcing

Proposition 2.5.1. The optimal expected profit achieved under dual-source capac-

ity expansion is higher than the optimal profit achieved under single-source capacity

expansion, irrelevant to the price/cost structure and regardless of whether the single-

source is using the base supplier or the flexible supplier.

Proposition 2.5.1 states that dual-sourcing enables the manufacturer to reap a

higher profit than single-sourcing, either with the base supplier or the flexible supplier.

In practice, however, manufacturers may not be willing to sign contracts with two

capacity suppliers (or with the same supplier for different supply modes) unless the

gain from dual-sourcing is nontrivial, since contracting and supplier management

themselves involve administrative costs. We demonstrate below that the additional

benefit of having dual-source can be significant.
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Figure 2.4: Single-Source v.s. Dual-Source Optimal Profit (n = 2, ỹ2 = 0)

Table 2.2: Single-Source vs. Dual-Source Profit Comparison (×103; n = 2; ỹ2 = 0;
% ↓ means percentage profit decrease compared with the dual-source case)

initial capacity 0 2 4 6 8 10 12 14 16 18 20

dual-source 1.103 1.139 1.175 1.211 1.247 1.283 1.319 1.355 1.391 1.427 1.448

low flex-source 1.075 1.111 1.147 1.183 1.219 1.255 1.291 1.327 1.363 1.399 1.425

cf (% ↓) 2.54% 2.46% 2.38% 2.31% 2.25% 2.18% 2.12% 2.07% 2.01% 1.96% 1.59%

base-source 0.587 0.720 0.848 0.960 1.046 1.127 1.209 1.290 1.367 1.420 1.442

(% ↓) 46.8% 36.8% 27.8% 20.7% 16.1% 12.2% 8.34% 4.80% 1.73% 0.49% 0.41%

dual-source 0.808 0.878 0.948 1.018 1.088 1.158 1.228 1.298 1.368 1.420 1.442

high flex-source 0.583 0.653 0.723 0.793 0.863 0.933 1.003 1.073 1.143 1.213 1.275

cf (% ↓) 27.8% 25.6% 23.7% 22.1% 20.7% 19.4% 18.3% 17.3% 16.4% 14.6% 11.6%

base-source 0.587 0.720 0.848 0.960 1.046 1.127 1.209 1.290 1.367 1.420 1.442

(% ↓) 27.4% 18.0% 10.5% 5.70% 3.86% 2.68% 1.55% 0.62% 0.07% 0.00% 0.00%

In Figure 2.4(a) and also the upper half of table 2.2, we compare the profit-to-go

performance of dual-sourcing and single-sourcing when cb = 15 and cf = 18. We see

that when the initial capacity position x̃n is low (below 20 in this case), dual-sourcing

has a strictly better performance, particularly over the scenario of single-sourcing

with the base supplier only. Specifically, when the initial capacity position is 0, which

is the case when the manufacturer initiates the production, the expected total profit

achieved under dual-sourcing is 87.9% higher than that achieved with single base

sourcing. The performance gap closes as the initial capacity position increases and

less additional capacity is needed. We also notice that when cf is close to cb as in this

case, the profit difference between single flexible sourcing and dual-sourcing is within

3%. As we move to the other case when cf = 35 (corresponding to Figure 2.4(b) and
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the lower half of Table 2.2), however, we see that dual-sourcing achieves considerably

higher profit than both single base sourcing and single flexible sourcing (about 38%

higher) when initial capacity position is low.

Remark. If the manufacturer initiates production with zero on-hand capacity, then

having dual sources is always much more beneficial than having the single base source.

A comprehensive analysis under widely varied cost parameters indicates that the ad-

vantage of having dual sources over having a single flexible source is also considerable

if the flexible ordering cost is not too low and the initial capacity level is not too high.

2.5.3 The Value of Forecast Updates

In this section we briefly explore the value of demand forecast updates under a dual-

source capacity expansion setting. Intuitively, if we fix the distribution of period n

demand’s total uncertainty, ε1

n
+ε2

n
, then under a dual-sourcing strategy the expected

profit should be higher when we increase the variance of ε1

n
, i.e., the portion of uncer-

tainty that is captured by ε1

n
. If more demand information is contained in ε1

n
, then

the flexible source will play a bigger role in terms of responding to the realization of

the first market information instantaneously. There is some difficulty in designing the

experiment. To facilitate programming, we want to use discrete uniform distribution

with support on a consecutive integer range for both ε1

n
and ε2

n
; however, it is hard to

find pairs of distributions that have the above features while keeping the distribution

of their summation unchanged. To simplify, let U1 ∼ U [−4 : 1 : 4] with mean 0 and

standard deviation 2.58, and U2 ∼ U [−8 : 1 : 8] with mean 0 and standard deviation

4.90. Also, let Ũ := U1 +U2, hence the distribution of Ũ can be denoted by Table 2.3

(with mean 0 and standard deviation 5.54):

Table 2.3: Distribution of Ũ

support ±12 ±11 ±10 ±9 ±8 ±7 ±6 ±5 ±4 ±3 ±2 ±1 0
probability 1

153
2

153
3

153
4

153
5

153
6

153
7

153
8

153
9

153
9

153
9

153
9

153
9

153

Now, define the weight of market information ε1

n
to be w := σ(ε1

n)

σ(ε1
n+ε2

n)
, where σ(·)

is the standard deviation of the argument. We compare the profit performance of
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four different cases: ε1

n
= 0, ε2

n
= Ũ (w = 0); ε1

n
= U1, ε2

n
= U2 (w

.
= 0.47); ε1

n
= U2,

ε2

n
= U1 (w

.
= 0.88); and finally, ε1

n
= Ũ , ε2

n
= 0 (w = 1). Representative results are

summarized in Figure 2.5 and Table 2.4.

As we increase the weight of ε1

n
gradually from 0 to 1, we observe that for each

state the expected profit also increases. More specifically, compared with the bench-

mark case where there is no demand forecast update (w = 0), the expected profits

corresponding to w = 0.47, 0.88 and 1 are increased by approximately 1.6%, 7.9%,

and 13.7%, respectively, for the high cf case (Figure 2.5(b)), and by 1.2%, 8.3%, and

16.4%, respectively, for the low cf case (Figure 2.5(a)), when the initial capacity and

the modified backorder level are both 0. This nontrivial profit increase is attributed

to the value of updated demand information.
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Figure 2.5: Expected Profit under Different Weights of ε1

n
(n = 2, ỹ2 = 0)

Remark. The flexible source can be used to capture both backorders from the pre-

vious period and to enable a response to the updated demand information for the

current period. Therefore, the value of having dual-sourcing is largely dependent on

the initial market information ε1

n
that can be observed before the final demand is real-

ized. The more information ε1

n
contains, the higher profit dual-sourcing can achieve.

To fully utilize the advantage of dual-source capacity expansion, the manufacturer

should also improve the efficiency of its demand forecast updating process.
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Table 2.4: The Expected Profit Under Different Weights of ε1

n
(×103; n = 2; ỹ2 = 0;

% ↑ means percentage profit increase compared with the case of w = 0)

initial capacity 0 2 4 6 8 10 12 14 16 18 20

w = 0 0.9696 1.0056 1.0416 1.0776 1.1136 1.1496 1.1856 1.2216 1.2576 1.2936 1.3296

w = 0.47 0.9801 1.0170 1.0530 1.0890 1.1250 1.1610 1.1970 1.2330 1.2690 1.3050 1.3410

low (% ↑) 1.17% 1.13% 1.09% 1.05% 1.02% 0.99% 0.96% 0.93% 0.90% 0.88% 0.85%

cf w = 0.88 1.0503 1.0863 1.1223 1.1583 1.1943 1.2303 1.2663 1.3023 1.3383 1.3743 1.4069

(% ↑) 8.32% 8.02% 7.75% 7.49% 7.25% 7.02% 6.81% 6.60% 6.42% 6.24% 5.81%

w = 1 1.1289 1.1649 1.2009 1.2369 1.2729 1.3089 1.3449 1.3809 1.4169 1.4419 1.4559

(% ↑) 16.4% 15.8% 15.3% 14.8% 14.3% 13.9% 13.4% 13.0% 12.7% 11.5% 9.50%

w = 0 0.6751 0.7451 0.8151 0.8851 0.9551 1.0251 1.0951 1.1641 1.2271 1.2811 1.3258

w = 0.47 0.6861 0.7561 0.8261 0.8961 0.9661 1.0361 1.1061 1.1752 1.2376 1.2911 1.3349

high (% ↑) 1.63% 1.48% 1.35% 1.24% 1.15% 1.07% 1.00% 0.95% 0.86% 0.78% 0.69%

cf w = 0.88 0.7282 0.7982 0.8682 0.9382 1.0082 1.0782 1.1482 1.2182 1.2837 1.3341 1.3683

(% ↑) 7.87% 7.13% 6.51% 6.00% 5.56% 5.18% 4.85% 4.65% 4.61% 4.14% 3.21%

w = 1 0.7677 0.8377 0.9077 0.9777 1.0477 1.1177 1.1877 1.2577 1.3277 1.3697 1.3837

(% ↑) 13.7% 12.4% 11.4% 10.5% 9.70% 9.03% 8.46% 8.04% 8.20% 6.92% 4.37%

2.6. Conclusion

In this chapter, we studied a dynamic dual-source capacity expansion problem with

backorders, in which a manufacturer procures production capacity from two supply

sources with consecutive leadtimes and different prices. After assuming an additive

form of demand in terms of constant mean value and two random market informa-

tion elements, we were able to derive a dynamic programming recursion with two

state variables: the initial capacity position and the modified backorder level. Joint

concavity holds for the objective function. However, unlike in dual-source inventory

control problems or dual-source capacity expansion problems with lost sales, where

a base-stock policy exists for the fastest two supply modes at optimality, we demon-

strated that under dual-source capacity expansion with demand backlogging only

the flexible (fast) orders follow a state-dependent base-stock policy. The base (slow)

orders, on the other hand, follow a so-called partial-base-stock policy, where there

exists a constant expand-to level only when the initial capacity position is below the

base-stock level of the flexible source. We also obtained some monotonicity properties

on the optimal (partial) base-stock levels. These results contribute to the literature

on dynamic dual-source inventory and capacity management. In addition, we quan-

tified the value of having dual sources and demand forecast updates during capacity

planning through a brief numerical analysis.
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We conclude that the dynamic dual-source capacity expansion problem with back-

orders is inherently different and more complex than its inventory counterpart as well

as the dynamic dual-source capacity expansion problem with lost sales. Even in the

simplest setting, i.e., under consecutive zero-one leadtimes, the optimal policy for this

problem lacks structure. Given the challenges of capacity planning in capital-intensive

industries and the underlying inefficiencies, it is thus critical to develop a better un-

derstanding of the complex balancing act of capacity procurement. Constructing

solutions to handle the inherent tradeoffs will improve the capacity expansion process

and will potentially save hundreds of millions of dollars in these industries.
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Chapter 3

Dual-Mode Equipment

Procurement Heuristic

3.1. Introduction

3.1.1 Motivation

Capacity planning is a complex balancing act, especially in the semiconductor in-

dustry. This industry is one of the most capital-intensive industries in the world;

a single piece of semiconductor manufacturing equipment commonly costs tens of

millions of dollars. Compounding the problem of high costs are the long leadtimes

and the volatile consumer market. The order-to-production cycle for semiconductor

manufacturing equipment can take up to 16 months, which exacerbates the difficulty

of forecasting demand accurately. This chapter addresses the challenges of capacity

planning in the semiconductor industry and describes our efforts at Intel to tackle

these challenges by continuously improving the set of rules for Intel’s engagement

with the equipment suppliers.1

In the semiconductor industry, the marginal cost of unmet demand is considered

to be significantly higher than the marginal cost of idle capacity (Fleckenstein 2004).

Thus, despite the astounding costs, semiconductor firms often err on the side of having

1This chapter is a joint work with Feryal Erhun, Erik Hertzler, and Karl Kempf. A related paper
is currently under revision at Manufacturing & Service Operations Management.

25
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excess capacity and keep some equipment idle in order to not lose customer goodwill

and loyalty. As an example, Figure 3.1 shows Intel’s historical capacity purchases for

six consecutive process technologies (denoted by T−5 through T0). The shaded areas

in the figure display the difference between purchased capacity and realized demand

at the peak of the demand curve. Consistently, all six generations suffered from excess

capacity, the value of which is estimated to be several hundred million USD in capital

depreciation per technology. Clearly, there are opportunities to improve this process.

Normalized 
Capacity

100%
Excess

Required 
Capacity

80%

60%

40%

at Peak

T0T-1T-2T-3T-4T-5 time

Capacity 
at Peak

20%

0%

Figure 3.1: Purchased Capacity vs. Realized Demand at Intel

Traditionally, an easy way for firms with strong bargaining power to partially

mitigate this capacity risk and avoid purchasing too much excess equipment has been

through soft orders. To secure procurement contracts, suppliers have allowed firms

to over-order capacity at the beginning of the planning horizon and to cancel some

of the excess equipment without paying high penalties when more precise demand

information becomes available, a process similar to the “phantom ordering” common

in the personal computer and electronics industry (Lee et al. 1997, Cohen et al. 2003).

As a result, equipment suppliers have carried most of the demand risk. However,

this type of relationship is no longer sustainable. To keep pace with the technology

requirements of maintaining Moore’s Law (Moore 1965), the cost of capital equipment

in the semiconductor industry has been steadily rising with no end in sight. Building

a fab now costs in excess of 5 billion USD, up from 6 million USD in 1970 and around

2 billion USD in 2001 (Kanellos 2003). Hence, soft orders are costly to suppliers.

In addition, the recent trend of supply consolidation (Armbrust 2009) has further

increased suppliers’ bargaining power and as a result, suppliers are becoming reluctant
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to carry demand risk through soft orders. On top of these facts, soft orders under most

circumstances refer to orders that can be cancelled only BEFORE shipment. Even

if allowed, they cannot totally eliminate over-capacity since there still can be huge

uncertainty between capacity delivery and demand realization. Thus, the challenge

for a semiconductor manufacturing firm is to derive innovative ways to order the

right amount of equipment at the right time and price in advance of the demand

realization to minimize unnecessary equipment purchases while maintaining a high

level of service. Further, this goal should be achieved without pushing all of the risk

onto suppliers.

The industry leader Intel and its suppliers are always working to refine the set

of rules for their engagement. At Intel, the continuous improvement of capital ac-

quisition and installation processes is an ongoing corporate priority. To be able to

respond rapidly to changing customer demand for products while minimizing unnec-

essary capital expenditures is vitally important to both the semiconductor market and

the firm itself. From Intel’s perspective, demand uncertainties due to extremely long

procurement leadtimes add too much idle capacity to the system and jeopardize the

agility of the supply chain. Intel prefers to have tighter control of its capital supply

chain by shortening equipment procurement leadtimes and improving the accuracy of

the demand forecast used in capacity planning. In return for this flexibility, Intel is

willing to take on some risk from its suppliers and is considering risk-sharing mech-

anisms. In this chapter, we propose a dual-mode equipment procurement (DMEP)

model, which effectively addresses the above concerns by incorporating a fast supply

mode (in addition to the regular procurement mode), a forecast revision mechanism,

and a capacity reservation procedure. In designing DMEP, our goal is to guide Intel

during the phases of equipment procurement. In particular, we are interested in the

following questions: How can Intel quickly evaluate different flexible options during

contract negotiations? Under what circumstances does the flexible mode create value

for the firm? How much of the total capacity should be reserved through the flexible

mode? When should this capacity be exercised?

The rest of the chapter is organized as follows: In Section 3.1.2, we briefly intro-

duce the dual-mode equipment procurement model, which consists of three layers: a

strategic contract negotiation layer, a tactical reservation layer, and an operational
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execution layer. Although motivated by Intel’s continuous improvement efforts on

equipment procurement, this model is versatile enough to be adapted by firms in

other capital-intensive industries, such as the pharmaceutical and automotive in-

dustries. Section 3.2 provides a brief literature review for each layer of the model.

Chapter 2 of this dissertation already shows that the execution layer of this model

becomes intractable even under the simplest settings. Hence, we construct a heuristic

approach for this problem in Section 3.3. In Section 3.4, we implement a detailed

numerical analysis to quantify the value of the added flexibility that the dual-mode

equipment procurement model provides. In particular, Section 3.4.3 looks at an ex-

tension that incorporates the firm’s risk-averse attitude. Section 3.5 concludes the

chapter and provides managerial insights. All proofs are presented in the appendix.

Throughout the chapter, we use the terms increasing and decreasing in the weak

sense; i.e., including equalities.

3.1.2 The Business Problem

As discussed in Section 3.1.1, Intel’s goal is to continuously improve its equipment

procurement strategies to support customer demand without over-purchasing costly

capacity. Such a strategy should also embody fairness to its suppliers through a

risk-sharing mechanism. To achieve this goal, we introduce the dual-mode equipment

procurement (DMEP) model.

DMEP enables a firm to procure equipment from one supplier using two supply

modes with complementary leadtimes and prices: a base mode (which is the regular

procurement mode) that is less expensive but has a longer procurement leadtime Lb

and a flexible mode that is more expensive but has a shorter procurement leadtime

Lf . The introduction of the flexible supply mode allows Intel to learn more about

demand before committing to capacity. In return, to share the risk with its suppliers,

Intel makes an up-front payment to secure certain base and flexible capacity levels

ahead of time and faces prohibitive costs to cancel an order once it has been placed.

As such, DMEP captures different phases of the relationship between Intel and its

suppliers and is composed of three stages: contract negotiation, capacity reservation,

and procurement execution (Figure 3.2).

During the contract negotiation stage, several years before the adoption of a new
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Contract Negotiation Problem

Reservation 
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Figure 3.2: The Dual-Mode Equipment Procurement Model

process and the production of the necessary equipment, Intel and its supplier agree

on the parameters of the supply modes. That is, they negotiate the leadtimes and

prices (a reservation price and an execution price) of the base and flexible modes.

During the reservation stage, several quarters before the planning horizon starts,

Intel reserves the total equipment procurement quantities BT and F T from the base

and flexible supply modes at unit reservation prices rb and rf , respectively. These

reservation quantities act as an upper bound on the total order volumes from the two

supply modes in all subsequent periods. During the execution stage, in each period

n, Intel orders specific amounts of equipment Bn+Lb
and Fn+Lf

(the subscript denotes

the period when the ordered equipment arrives) from the two supply modes at unit

execution prices cb and cf , respectively, given the latest demand forecast as well as

the realized demand information from the market. The execution algorithm follows

a modified rolling-horizon process that will be explained in more detail later on.

With its three stages, DMEP evaluates various tradeoffs inherent in this set-

ting. First, the contract negotiation stage balances accurate demand information

with sourcing from expensive modes. Procuring from the flexible mode allows Intel

to react to the market condition later with better demand information; however, the
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flexible mode is costlier than the base mode. Furthermore, Intel pays more for shorter

procurement leadtimes, and choosing the right leadtime-cost combination is crucial.

Secondly, the reservation stage balances flexibility (by reserving adequate capacity)

with high reservation costs. By having a large reservation pool up front, Intel can

guarantee the punctual delivery of its future orders; however, the reservation payment

implies a high opportunity cost if the equipment is not ordered. Finally, the execution

stage balances capacity holding costs with demand backordering costs. Early equip-

ment procurement reduces the potential risk of having unsatisfied demand; however,

it also leads to a higher capacity holding cost and a high opportunity cost if the

equipment remains idle.

The goal of DMEP is to choose the appropriate leadtime-cost combinations, reser-

vation levels, and execution quantities to maximize the expected total profit for Intel

across the entire planning horizon. It is important that DMEP achieves its goals

without pushing all of the risk onto the supplier. As such, the reservation payment

enables the supplier to obtain capital to prepare its own production capacity and

to help the supplier provide Intel with the guaranteed flexibility of ordering equip-

ment when needed. That is, the reservation stage allows Intel to share risk with its

supplier. Through the availability of a shorter leadtime mode, DMEP allows Intel

to have tighter control of its capital supply chain. Through up front payments and

commitments, DMEP is more fair to Intel’s suppliers.

3.2. Literature Review

The contract negotiation stage of DMEP builds on the literature on supply contracts.

We refer the reader to Cachon (2003). The contract that we study is closely related

to the one analyzed in Yazlali and Erhun (2010). The authors investigate a dual-

supply contract with minimum order quantity and maximum capacity restrictions.

This contract provides supply chain partners an enhanced mechanism to share and

manage demand uncertainty in the context of inventory management. We adopt a

similar structure here for capacity procurement. The negotiation of price-leadtime

combinations is also related to the literature on pricing and leadtime quotation. This

literature often assumes that the buyer’s order quantity is a function of the price
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and leadtime quoted by the supplier and thus focuses on the supplier’s optimal price-

leadtime decision (Palaka et al. 1998; Liu et al. 2007). We, on the other hand, take

the buyer’s perspective and provide the buyer a decision-support tool that it can use

while negotiating the procurement price and leadtime with its supplier.

The reservation stage addresses a capacity expansion problem. The capacity ex-

pansion problem under single-sourcing has been extensively studied in the literature;

see Van Mieghem (2003) for a review of this literature. Wu et al. (2005) provides

a thorough review of the literature on capacity planning problems in the high-tech

industry. DMEP is also closely related to the literature on procurement and op-

tions contracts (e.g., Bassok and Anupindi 1997; Bassok et al. 1999; Vaidyanathan

et al. 2005). In particular, the reservation stage of DMEP builds on the paper by

Vaidyanathan et al. (2005), which focuses on the capacity contracts at Intel and

discusses capacity options to better enable the factory ramps. In this chapter, we

extend and merge these two streams of research by studying capacity expansion and

option contracts in a dual-mode setting.

The execution stage of DMEP is closely related to the dual-sourcing problem,

except that here we assume the firm is sourcing from two service modes of the same

supplier rather than from two different suppliers. The dual-sourcing problem has

been studied extensively in the context of inventory since the early 1960s (Daniel

1963; Fukuda 1964; Whittemore and Saunders 1977; Scheller-Wolf and Tayur 1998;

Feng et al. 2006; Yazlali and Erhun 2007, 2009). Dual-source inventory management

has also been commonly adopted as an operational risk hedging strategy by firms in

different industries for many years, e.g., Mattel (Johnson 2005) and HP (Billington

and Johnson 2002). Despite the existence of literature on the dual-sourcing inven-

tory problem, research concerning the dual-sourcing capacity procurement problem is

scarce, with the exception of one recent paper (Chao et al. 2009); Chao et al. (2009)

investigate a dual-source setting for the service industry where demand in excess of

capacity is lost; they establish that the optimal capacity expansion policy with the

fast source is base-stock. The authors further demonstrate that when the capacity

obsolescence rate is deterministic, the optimal policy for capacity expansion through

the slow source is also base-stock. Their model is restricted in the sense that: (1) it

only deals with the lost-sale case, which is a simpler setting for capacity expansion
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problems; (2) it assume consecutive 0-1 leadtimes. The model we construct in this

chapter tries to relax both of these assumptions.

Another relevant stream of literature is about rolling-horizon decision-making with

information updates. Researchers in the 70’s (Baker 1977, Baker and Peterson 1979)

examined the effectiveness of rolling-horizon planning in the classic dynamic lot-sizing

setting and concluded that rolling schedules are quite efficient. Some subsequent re-

search (Bitran and Yanasse 1984, Bitran and Leong 1992) discusses deterministic

approximations to stochastic production planning problems based on rolling-horizon

concepts and quantifies the optimality gaps. Yildirim et al. (2005) extend the above

stochastic production problem to a dual-source setting, where the manufacturer has

both an in-house production facility and a subcontractor, with the same delivery lead-

time but different costs and capacity limits. They demonstrate that the performance

of a rolling-horizon deterministic equivalent model is very close to that of a benchmark

threshold policy. Most of the literature in this area looks at an infinite period problem

with a finite period rolling horizon; during each period, the information update only

refers to the demand realization for the current period as well as the forecast for the

additional period that has just entered the rolling window; the forecast information

for all the overlapping periods are not updated. To incorporate a forecast updating

mechanism (e.g., Graves et al. 1985, Eppen and Iyer 1997, Donohue 2000), Lian et

al. (2010) investigate a rolling-horizon inventory replenishment model in which the

buyer can update demand information and modify the previously committed order

quantities; however, they limit their analytical discussion to a two-period model only.

Compared to the extant literature, the modified rolling-horizon algorithm developed

at the execution stage of our DMEP model has some unique features: First, it ex-

plicitly handles a dual-source procurement problem with nonconsecutive leadtimes

and cross orders. Second, it is integrated with a systematical range forecast updating

mechanism. Last, it is applied to a finite-period problem and the rolling window has

a moving left boundary but a fixed right boundary.

In sum, by utilizing the concepts of capacity expansion, dual-sourcing, and rolling-

horizon decision-making, we build a heuristic solution for DMEP, which will be de-

scribed in detail in Section 3.3. We believe that in addition to its practical value, our

work contributes to the OM literature and the research community in two ways:
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1. We develop a comprehensive framework to structure the multi-stage decision hi-

erarchy and capture the real-world dynamics and constraints for the equipment

procurement problem.

2. We provide an efficient heuristic to solve the rather complex dual-source equip-

ment capacity expansion problem with general leadtimes and demand backlog-

ging, responding to the challenge raised in Chapter 2. The modified rolling-

horizon algorithm can also be applied to solve other nonconsecutive-leadtime,

multi-sourcing inventory control problems, which would otherwise be intractable.

3.3. Dual-Mode Equipment Procurement

Heuristic

As discussed in Chapter 2 and Section 3.2, theoretically, the equipment procurement

decision that the firm faces fits in the scope of a dual-source capacity expansion prob-

lem and could be formulated as a dynamic programming model. In practice, however,

this may not be the best approach to take for two reasons. First, this is a complex

problem and the dynamic programming model is rather difficult to solve. Even for the

simplest setting where the leadtimes are consecutive with Lb = 1 and Lf = 0, Chap-

ter 2 demonstrates that the dual-source capacity expansion problem with backorders

does not have a well-behaved optimal policy. The general case with nonconsecutive

leadtimes is even more complex. This complexity not only jeopardizes the possibility

of finding any structural policy, but also sharply reduces the computational efficiency

due to the famous curse of dimensionality. Second, although the dynamic program-

ming model may help us identify the optimal equipment procurement strategy, it

comes with strict assumptions, such as fixed and known distributions of all uncertain

factors and consecutive leadtimes, which can hardly be justified in practice. There-

fore, to avoid the above restrictions, we propose an open-loop simulation model as a

heuristic approach. The goal of this approach is to provide Intel a fast and accurate

decision-support tool with what-if capabilities that will guide the firm in answering

the three questions we pose in Section 3.1.1.

To map the structure presented in Figure 3.2, the DMEP heuristic algorithm
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consists of the same three layers: the outermost is the contract negotiation layer,

which identifies the indifference curves of leadtime and price combinations so that

the firm can pick the best alternative from the contract menu; the middle is the

reservation layer, which calculates the optimal equipment reservation quantities BT

and F T for the two supply modes; and the innermost is the execution layer, which

determines the equipment order quantities Bn+Lb
and Fn+Lf

from the two supply

modes in period n. Before elaborating on each of these three layers in more detail, we

first consider the demand forecast revision process, which is one of the main drivers

of the problem.

3.3.1 The Forecast Revision Mechanism

One of the major factors that complicate the equipment procurement decision is

demand volatility. In a highly uncertain world, we need a detailed forecast revision

model that can describe not only the variance associated with each period’s demand,

but also the process by which the firm continuously adjusts its anticipation of the

future demand distribution based on the available information. Meanwhile, such a

demand revision model would have the greatest value to the industry practice if it

also observes a simple format that is convenient to implement.

Following the above guidelines, we modify the classical martingale model of fore-

cast evolution, i.e., MMFE (Hausman 1969, Graves et al. 1986), by decompos-

ing it into a mean evolution process and a variance evolution process. In par-

ticular, define Dm

n
as the forecast made in period m for the demand in period n

(m = 1 − Lb, · · · , N − Lf ; n = 1, · · · , N ; m < n); we use µm

n
and σm

n
to repre-

sent the mean and the coefficient of variation (c.v.) associated with Dm

n
, and let

Dm

n
∼ N (µm

n
, σm

n
)2; Dn

n
then refers to the realized demand of period n. We assume

that the mean forecast evolution for a certain period n’s demand follows a markovian

process with either an additive form: µm

n
= µm−1

n
+εm

n
(m = 2−Lb, · · · , n−1), where

all the εm

n
’s are independent random variables with zero mean, or a multiplicative

form: µm

n
= µm−1

n
ε̂m

n
(m = 2 − Lb, · · · , n − 1), where all the ε̂m

n
’s are independent

positive random variables with mean value Eε̂ = 1. For both cases the initial mean

forecast profile at period 1 − Lb is given by �µ1−Lb = (µ1−Lb

1
, · · · , µ

1−Lb

N
). The choice

2We modify the regular normal distribution notation by putting c.v. in the variance position.
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Figure 3.3: Graphical Demonstration of the Forecast Revision Mechanism

between these two forms should depend on specific business environment and the

company’s empirical forecasting data. In a practical context, the multiplicative form

is preferred due to two reasons (Hurley et al. 2007) despite its analytical complexity:

first, the additive format may lead to negative demand values; second, industry fore-

casts are more frequently updated in a relative sense rather than an absolute sense.

We further assume that the forecast variance evolution is predictable and the fore-

cast c.v. is uniquely determined by the forecasting leadtime: σm

n
= f(n−m), where

f(·) is an increasing function. We can choose different functional forms (e.g., lin-

ear, quadratic, logarithmic, etc.) for f(·) to reflect how the firm’s forecasting ability

changes with the forecasting leadtime.

Although this decomposed revision model may first seem like a notational com-

plication to the standard MMFE method, it is actually easier to navigate in practice

based on the feedback from Intel. Especially when compared to the original multi-

plicative MMFE process under which Dn = µ1−Lb

n

�
n

m=2−Lb
ε̂m

n
, our approach provides

a technical simplification in the sense that we can now avoid calculating the cumu-

lative distributions that involve the multiplication of several random variables. For

firms that were used to point forecasting rather than range forecasting during the

operational planning process, they can now update the mean forecast as if they were

still doing point estimates, and then simply bundle it with the corresponding vari-

ance to generate a stochastic range forecast. We believe that our approach achieves
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a tradeoff between analytical rigorousness and managerial applicability. However, we

want to point out that the overall DMEP framework is actually general enough to be

combined with other forecast revision mechanisms as well.

Figure 3.3 graphically describes the demand forecast updating process, where

period 0 is chosen as an anchor period and does not necessarily correspond to the

starting period of the demand ramp. Figure 3.3(a) shows how forecasts for period-

0 demand µm

0
and σm

0
(m ≤ 0) evolve as we approach period 0. The solid curve

represents the mean forecast evolution path, and the interval between the dashed

curves denotes the variance range, which shrinks as the forecasting leadtime decreases.

That is, the forecast accuracy for a certain period’s demand improves as one moves

closer to that period in time. Figure 3.3(b) depicts the forecasts µ0

n
and σ0

n
(n ≥ 0)

made in period 0 for all future periods’ demand: the solid curve represents the mean

forecast and the dashed interval denotes the variance range, which diverges as the

forecasting leadtime increases. That is, the forecasting accuracy decreases as one

forecasts further into the future.

Next, we explain the DMEP heuristic in greater detail. We first discuss the

execution layer, then the reservation layer and the contract negotiation layer, since

the former is a fundamental building block for the others.

SELLING SEASON

Period
�…�… �…�…

N-1
�…�…

0 1 N1-Lb 1-Lf N-Lb N-Lf

order only 
base order both base and flexible order only 

flexible

PLANNING HORIZON

Figure 3.4: The Timeline of the Execution Problem

3.3.2 The Execution Problem

The execution module is the core of the DMEP heuristic. Given the reservation

quantities BT and F T , the execution module characterizes how the firm should place

the base and the flexible orders in each period. At the beginning of each period, the
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firm obtains the latest demand realization and forecast updates for all future periods.

Based on this information, all previously placed base and flexible orders, and the

backorder quantity from the preceding period, the open-loop execution algorithm

calculates the myopic optimal base and flexible order quantities for the remaining

periods.

Figure 3.4 displays the timeline of the execution problem. The selling season of

the product is N periods and starts in period 1. To prepare for the demand ramp,

the firm starts placing orders Lb periods before the first demand realization and stops

placing orders Lf periods before the end of the selling season. Therefore, the length of

the planning horizon is N +Lb−Lf periods. The firm orders only from the base mode

in periods 1−Lb, · · · ,−Lf ; it orders from both modes in periods 1−Lf , · · · , N −Lb;

and it orders only from the flexible mode in periods N−Lb+1, · · · , N−Lf . In periods

N − Lf + 1 to N , the firm simply satisfies the demand with the existing capacity.

Specifically, in period m of the planning horizon (m = 1−Lb, 2−Lb, · · · , N−Lf ),

the execution module solves the following stochastic optimization problem:

maximize
�B1,··· ,N ; �F1,··· ,N

Ed1∨(m+1),··· ,dN

�
N�

i=1

δ
i{pisi − cbBi − cfFi − chki}− δ

N+1
cud

rem

N+1

�

(3.3.1)

subject to: For each realized sample path d1∨(m+1), · · · , dN

si = min{ki, di + d
rem

i
} for i = 1, · · · , N (3.3.2)

ki ≥ ψdi + d
rem

i
for i = 1 ∨ (m + Lf ), · · · , N (3.3.3)

ki = ki−1 + Bi + Fi, for i = 1, · · · , N with k0 = 0 (3.3.4)

d
rem

i
= (di−1 + d

rem

i−1
− ki−1)

+
, for i = 1, · · · , N with d

rem

1
= 0

(3.3.5)
N�

i=1

Bi ≤ B
T ;

N�

i=1

Fi ≤ F
T (3.3.6)

�B1:N ≥ 0; �F1:N ≥ 0 (3.3.7)

�B1:m−1+Lb
= �B

∗
1:m−1+Lb

; �F1:m−1+Lf
= �F

∗
1:m−1+Lf

(3.3.8)

We define x ∨ y := max(x, y) and use the notation �x1:j to represent the vector
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[x1, x2, · · · , xj]T . Additionally, pi is the profit margin for period i; cb the base mode

execution price; cf the flexible mode execution price; ch the unit holding cost; cu the

unit penalty cost for unmet demand after the planning horizon ends; di the incoming

demand in period i; drem

i
the unsatisfied demand remaining from period i− 1; si the

actual sales quantity during period i; ki the cumulative capacity position at period i;

ψ the service level target; and δ the discount factor. B∗
i

and F ∗
i

represent the optimal

decisions that were already executed in previous periods. We note that the subscripts

used for order quantities denote the period when the ordered equipment arrives.

The objective function maximizes the expected profit by considering the profit

margin, equipment procurement costs, and inventory-related costs. The expectation

is taken over all future demand and the execution cost is calculated when the orders

arrive. We note that as our goal is to understand the strategic and tactical level ca-

pacity decisions, we suppress the operational level inventory problem and assume that

production in a period will not exceed demand. Constraint (3.3.2) guarantees that

sales in a given period cannot be larger than the demand or the supply; Constraint

(3.3.3) forces the firm to satisfy at least ψ percent of the incoming demand during

each period after fulfilling the backorders. Constraints (3.3.4) and (3.3.5) enable

state transitions for the capacity and backorders, respectively. Constraints (3.3.6)

and (3.3.7) guarantee that the base and flexible orders are within their reservation

limits and nonnegative. Finally, constraint (3.3.8) freezes the already executed orders

before finding the optimal order quantities. One crucial feature of this rolling-horizon

algorithm is that, in period m, only the orders B∗
m+Lb

and F ∗
m+Lf

(if m+Lf ≥ 1) will

actually be placed, and the rest of the decisions will be postponed to future periods.

To reflect the industry practice that we are investigating, we make several mod-

eling assumptions. First, we analyze a setting where the unmet demand during a

certain period is backordered (instead of lost, which is assumed in most of the ca-

pacity planning literature). Instead of defining a unit penalty cost per period, we

penalize the backordered demand in two ways: (i) at the end of the planning hori-

zon, any remaining unsatisfied demand incurs a terminal penalty; and (ii) the profit

margin of the product is decreasing over time, which implies that there is a loss of

revenue associated with backordering. Therefore, satisfying the demand earlier is al-

ways preferable if it is possible. Second, the on-hand equipment capacity incurs a unit
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holding cost, which may include the opportunity cost of investment or costs such as a

utility fee, maintenance expenditure, or cost of floor space. Third, investment in the

equipment capacity is irreversible; i.e., capacity contraction is not allowed. Fourth,

the firm is risk-neutral and maximizes its expected profit. Finally, the raw material

inventory is always sufficient for the production process, and we only concentrate on

the equipment procurement decisions.
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Figure 3.5: A Tabular Demonstration of the Execution Heuristic. Lb = 4, Lf = 2; σl

denotes the forecast variance corresponding to a forecasting leadtime of l periods; ∗
current period decision; previous decisions; grey decisions not to be executed; and
Dmd realized demand

To illustrate the firm’s decision-making process more clearly, we present the exe-

cution heuristic algorithm using a concise tabular format in Figure 3.5. We assume

that there are 6 periods in the selling season, the base mode leadtime is 4 periods, and

the flexible mode leadtime is 2 periods. The horizontal axis in the table represents

the entire selling season from period 1 to period 6. Each horizontal group below the

top line contains the demand information and decision profiles corresponding to a

decision period, which is labeled on the vertical planning horizon axis.
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At the beginning of the planning horizon, period −3, the firm obtains the latest

demand forecast information (µ’s and σ’s) for period 1 to period 6. The algorithm

runs the aforementioned stochastic optimization to maximize the expected total profit

across the entire planning horizon under the current demand information, taking the

six base orders (B1 to B6) and six flexible orders (F1 to F6) as the decision variables.

Once the optimal order quantities are obtained, only the base order B1 for period 1

is placed since, given the leadtimes of the two supply modes (Lb = 4, Lf = 2), the

firm only needs to commit to B1 at period −3; the rest of the decisions (B2 to B6,

F1 to F6) are postponed until later. At the beginning of period −2, the firm obtains

the updated forecast information (new µ’s and σ’s); it then solves a new stochastic

optimization to maximize the horizon-wide expected profit under the newly obtained

demand information, fixing B1 and taking B2 to B6 and F1 to F6 as the decision

variables. Similarly, at period −2 only the decision B2 needs to be executed and the

rest of the decisions are left for later periods. Following this logic, B3 and F1 will be

executed in period −1, etc. One can imagine that if µ
−1

1
is much higher than µ

−2

1

(demand forecast shock), then a positive F1 will be committed at period −1. This

rolling-horizon decision-making process continues until period 4, when the final order

F6 is committed. It is important to emphasize that starting from period 1, the actual

realized demand is treated as part of the updated demand information, and should

be taken into consideration when calculating the total expected profit.

We solve the above stochastic program using the standard sample average ap-

proximation method based on Monte Carlo simulation (Shapiro 2008). We are able

to consider a large number of samples, which improves the accuracy of the solution,

because the problem is easy to execute:

Proposition 3.3.1. Assuming that demand dn is discrete and takes finitely many

values, the above stochastic programming model can be converted into a linear pro-

gramming model.

The execution algorithm provides a handy roadmap that indicates when and how

much to order from the two supply modes. It captures the evolution of demand

information and enables last-minute decision-making. As opposed to the restricted

focus of some rule-of-thumb approaches such as executing flexible orders only during

the peak period, the potential use of the flexible mode is evaluated in each period of



www.manaraa.com

CHAPTER 3. DUAL-MODE EQUIPMENT PROCUREMENT HEURISTIC 41

the planning horizon. On the flip side, the execution algorithm is myopic in the sense

that it finds the “optimal” ordering scheme based on the current best information

only, without considering the opportunity to make contingent decisions based on the

actual realized demand at each stage. Fortunately, this disadvantage of myopia is

greatly mitigated by the rolling-horizon nature of the algorithm.

Proposition 3.3.2. When cf > cb, and BT and F T are not binding, the following

are true: (i) flexible orders are only likely to be placed for periods for which a base

order has already been committed; (ii) for stage m’s problem, the number of free3 base

decision variables is Ξb = [N +1−(m+Lb)]+, and the number of free flexible decision

variables is Ξf = (Lb − Lf ) ∧ (m + Lb − 1) ∧ [N + 1− (m + Lf )]+.

Proposition 3.3.2 above says that when the flexible execution price is higher than

the base execution price, which is indeed the practical situation under most business

contexts, the execution problem can be further simplified through a reduction in the

number of decision variables associated with the flexible mode. This again increases

the computational efficiency of the execution problem.

3.3.3 The Reservation Problem

As equipment suppliers gain more bargaining power due to the trend of supply con-

solidation, simply letting the supplier bear the major procurement risk is no longer

sustainable. The reservation module of the DMEP heuristic, therefore, functions as a

mechanism for risk-sharing between the firm and its equipment supplier. The firm, by

paying an up-front reservation fee, shares the risk of capacity building and installation

with the supplier and enjoys the guaranteed delivery of equipment in return.

Determining how much capacity to reserve from the two supply modes, especially

the flexible mode, is based on a tradeoff between the reservation cost and the po-

tential benefits from the guaranteed flexibility. Specifically, the optimal reservation

quantities BT and F T are determined according to a scenario analysis of the potential

future demand profiles. Intuitively, if the future demand scenario involves no uncer-

tainty, then flexibility has no value; it is never optimal to order from the expensive

flexible mode. In contrast, if the future demand scenario is highly uncertain and the

3“Free” here means that the decision variable is not subject to an equality constraint.
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demand mean forecast is very likely to be modified during the updating process, then

flexibility has a high value and we should expect a higher flexible reservation level.

In general, the reservation quantities maximize the expected horizon-wide profit over

all possible demand scenarios.

More precisely, the reservation algorithm determines the optimal BT and F T based

on a Monte Carlo simulation performed on the mean forecast evolution trajectories. It

generates mean forecast evolution paths according to the forecast revision mechanism

introduced in Section 3.3.1. Assuming that the mean forecast for the demand in

different periods evolves according to a Markovian process, we then have

P (µm

1
, · · · , µ

m

N
|µm−1

1
, µ

m−2

1
, · · · , µ

m−1

N
, µ

m−2

N
, · · · )

= P (µm

1
, · · · , µ

m

N
|µm−1

1
, · · · , µ

m−1

N
), for m < 1 (3.3.9)

where P (·) is the probability mass function if µ takes discrete values and the prob-

ability density function if µ takes continuous values. Therefore, at the beginning of

the planning horizon, given the initial demand forecast profile �µ1−Lb for the entire

horizon and P (·), the algorithm enumerates a large number of possible mean forecast

evolution paths. For each path it calls the execution module to calculate the spe-

cific order quantities as well as the expected horizon-wide profit. The algorithm then

chooses the reservation quantities BT and F T that maximize the average total profit

across the entire planning horizon.

Equation (3.3.10) formulates the reservation problem mathematically. We first

denote the optimal value function of the period-m execution problem (3.3.1)-(3.3.8)

as Jm(BT , F T , �µm,�σm) by decomposing the demand information d into its two com-

ponents µ and σ. We choose BT and F T to maximize the expected horizon-wide

profit JN−Lf since period N − Lf is the last period during which a decision can be

made. The stochastic optimization is given as

max
BT≥0;F T≥0

EM

�
J

N−Lf (BT
, F

T
, M, Σ|�µ1−Lb)

�
− rbB

T − rfF
T (3.3.10)

where the expectation is taken with respect to the mean forecast evolution space M :

M = {�µm : �µ
m = (µm

1∨(m+1)
, · · · , µ

m

N
), m = 1− Lb, · · · , N − Lf}. (3.3.11)
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As we expressed in equation (3.3.9), the mean forecast profile �µm follows a Markov

process with initial state �µ1−Lb and transition probability space P (·), such that a

particular realization of M occurs with probability

P (M |�µ1−Lb) = P (�µ2−Lb|�µ1−Lb)P (�µ3−Lb|�µ2−Lb) · · ·P (�µN−Lf |�µN−1−Lf ). (3.3.12)

Finally, the variance forecast evolution space is

Σ =
�
�σ

m : �σ
m = (σm

1∨(m+1)
, · · · , σ

m

N
), m = 1− Lb, · · · , N − Lf

�
; (3.3.13)

Σ is actually deterministic based on our assumption that the forecasting variance

is uniquely decided by the forecasting leadtime. Proposition 3.3.3 below establishes

the concavity and coerciveness of the reservation problem and thus the existence of

finite optimal reservation quantities for the two supply modes. Hence, the reservation

problem can be solved using either an optimization software or a search algorithm.

Proposition 3.3.3. The objective function in (3.3.10) is concave and coercive in

(BT , F T ).

The reservation algorithm helps the firm determine the optimal amount of equip-

ment to reserve for both supply modes. It builds on the philosophy of scenario analysis

and chooses the reservation quantities that guarantee the maximum expected return

to the firm. By adjusting the mean forecast transition probability P (·), we can easily

create different demand scenarios; hence the reservation algorithm is applicable to a

wide range of business settings.

Proposition 3.3.4. The total reservation quantity BT + F T increases in the ser-

vice level parameter ψ, the mean evolution jump size β, and the demand variance

coefficient γ. 4

The above proposition says that the firm tends to make more aggregate reserva-

tions when the service level requirement goes up or when the market becomes more

volatile. This makes intuitive sense since for the semiconductor industry the cost of

underage is higher than the cost of overage. In Section 3.4.2 we will discuss how the

4The formal definition of β and γ will be given in Section 3.4.1.
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individual BT and F T , as well as the ratio F
T

BT +F T , respond to the change of these

parameters.

3.3.4 The Contract Negotiation Problem

During the contract negotiation stage, facing a contract menu potentially suggested

by the equipment supplier, the firm determines the leadtimes (Lb, Lf ) of the two

delivery modes as well as the unit reservation (rb, rf ) and execution (cb, cf ) prices

associated with these leadtimes. Our algorithm involves a simple sensitivity analysis:

for different (leadtime, price) combinations, we run the reservation and execution

heuristic and obtain the corresponding expected horizon-wide profits. The decision-

maker can then choose the (leadtime, price) pair from the contract menu that leads

to the highest expected return for the firm.

The strength of this part of the heuristic is that it helps the firm make the op-

timal strategic level decision by considering potential tactical and operational level

contingencies. Thus, the three stages of DMEP constitute a stable decision-support

pyramid, in which the decisions are made in a top-down sequence while the underlying

algorithm follows an embedded bottom-up order.

3.4. DMEP as a Decision-Support Tool

In this section, we revisit the questions that we asked in Section 3.1.1 and illustrate

our approach to them with numerical examples. We first provide the parameter values

that we use for the numerical examples. We then explore the value of DMEP as a

decision-support tool with an emphasis on these three questions. We implemented

the DMEP heuristic using the convex optimization tool CVX (http://cvxr.com/cvx/)

in Matlab.

3.4.1 Parameter Values for the Numerical Examples

The parameter values we use in our examples are based upon the semiconductor

business environment. The values presented here are either publicly available or have

been normalized to protect the firm. For all numerical samples, the selling season is
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N = 6 quarters. The profit margin (including the equipment cost) of a single chip

is p0 = $33.75 before the first quarter of the life cycle starts; the profit margin pt in

quarter t satisfies an exponential decreasing formula: pt = p0e
−αt (Leachman 2007)

where the coefficient α is equal to 0.23, roughly implying that the margin decreases

by 50% per year. The unit penalty cost for unmet demand at the end of the selling

season is Cp = $50. The service level constraint is 95%. Each piece of equipment can

process 12, 000 wafers per quarter, and each wafer can be further sawed into 1, 425

chips. The discount factor per quarter is δ = 0.96.

In this setting, the leadtime and price for the base mode are usually fixed. How-

ever, suppliers offer a menu of contracts for the flexible mode, which commonly in-

cludes the available flexible leadtime options as well as the price associated with each

leadtime. The shorter the flexible leadtime, the higher the flexible price. Using this

fact, we set the base leadtime Lb to 4 quarters and the total equipment price associ-

ated with the base mode pb

e
to $25 million. We impose a minimum base reservation

price of rb = $0.1 million to eliminate the trivial case of infinite base reservation quan-

tity. The base execution price is thus given as cb = pb

e
− rb. We choose equipment

with a long leadtime as these equipments are the bottleneck in capacity planning and

are usually the ones which are very expensive. Hence they are difficult to manage and

therefore the target product of DMEP. The price associated with the flexible mode is

determined by two parameters: the equipment price increase ratio θ and the flexible

reservation price ratio λ. Namely, the total equipment price of the flexible mode is

pf

e
= θpb

e
where θ ≥ 1 since a faster mode implies a shorter preparation leadtime for

the supplier and hence a higher supply cost. The reservation price of the flexible mode

is rf = λpf

e
. The remaining (1 − λ) portion together with a fast shipment premium

of $50, 000 is paid as the flexible execution price; that is, cf = (1− λ)pf

e
+ $50, 000.

For the forecast revision process, we make some additional assumptions. First,

the mean forecast evolution follows a multiplicative form (µm

n
= µm−1

n
εm

n
), which can

better reflect the fact that forecast error is usually proportional to the forecasted

value. In particular, we introduce a mean-adjustment factor β that can be tailored to

each firm’s own forecasting history, and assume that εm

n
= 1 + β, 1, 1− β with equal

probability 1

3
. The mean forecasts for demand in different periods evolve indepen-

dently. Second, we assume the coefficient of variation σm

n
is linearly increasing in the
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forecast leadtime; i.e., σm

n
= γ × 0.01(n−m). We note that β controls the solid path

in Figure 3.3 and γ controls the width of the dashed variance interval. Last, demand

in each period is truncated normal.

Table 3.1 displays the initial demand forecast that is provided by Intel. The initial

forecast is symmetric with periods 3 and 4 being peaks. Using this initial forecast,

we study three different forecast scenarios. In the first scenario, the initial forecast

is not adjusted and the realized demand in each period matches the corresponding

mean forecast. The only randomness in this system is the variance coefficient γ.

Since the mean forecast evolution process is degenerative and hence β = 0 for all

periods in this case, we call this scenario the stationary demand scenario. The second

scenario investigates demand forecast shocks : during period −1 (1), the forecast for

the mean demand in period 1 (3) is adjusted upwards. The third scenario corresponds

to a situation with demand realization shock : the initial mean forecast profile �µ
−3

1,··· ,N

is not updated in periods −2, −1 and 0; in period 1, however, the actual realized

demand is 14,000, which is much higher than the previous mean forecast.

Table 3.1: Nonstationary Demand Forecast Scenarios (unit: wafer-start-per-week)

Scenarios period 1 period 2 period 3 period 4 period 5 period 6
Initial forecast �µ −3

1,··· ,6 4,788 9,577 14,365 14,365 9,577 4,788
Stationary demand �µ −3

1,··· ,6 4,788 9,577 14,365 14,365 9,577 4,788

Forecast shock �µ −1
1,··· ,6 7,000 9,577 14,365 14,365 9,577 4,788

�µ1
1,··· ,6 6,850 9,577 19,320 14,365 9,577 4,788

Realization shock �µ1
1,··· ,6 14,000 9,577 14,365 14,365 9,577 4,788

3.4.2 The Value of DMEP as a Decision-Support Tool

Under what circumstances does the flexible mode create value for the

firm?

To capture the settings under which the flexible mode will create value for Intel,

we first investigate the optimal equipment procurement decisions given the reserva-

tion quantities BT and F T . Figure 3.6 illustrates the settings under which the flexible

mode is utilized as a risk-hedging channel by summarizing our findings for the sce-

narios discussed in Table 3.1. The horizontal axis denotes the ratio between the
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0 

 Base and 
Flexible 

 Flexible 
only 

Base only 

Cf/Cb 

Forecast or 
realization shock 

1 

Cf increases 

Uncertainty 
increases 

Figure 3.6: Impacts of Price and Demand Property on the Ordering Policy (illustra-
tion)

flexible execution price cf and the base execution price cb; the vertical axis denotes

the size of the forecast shocks and/or the size of the demand realization shocks. The

entire plane can be divided into three different regions based on the value of the two

coordinates: If cf/cb ≤ 1, then the firm procures equipment only from the flexible

mode, since it is not only faster but also cheaper. If cf/cb > 1 and the forecast and

realization shocks are small enough, then it is optimal to procure only from the base

mode. That is, in the stationary demand scenario or when shocks are small, cost is

the only critical parameter: the firm prefers to single source using the less expensive

mode as long as there is available reservation quantity. When there is forecast shock

(previous demand forecast being adjusted upwards) or realization shock (extremely

large demand realization), however, this threshold policy ceases to apply. If cf/cb > 1

and the forecast or realization shocks surpass a certain threshold value, then both the

base mode and the flexible mode are used. Now the flexible mode adds value with

its shorter leadtime even when it is more expensive. The firm can wait until the last

minute to learn more about demand before placing orders and thus maintain an agile

environment.

At the tactical capacity reservation level, Figure 3.7 and 3.8 demonstrate that as

the demand risk increases (i.e., either the mean evolution jump size β or demand vari-

ance coefficient γ increases), the firm relies on the flexible mode more heavily. The

flexible mode is especially valuable in dealing with demand realization shocks since
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(a) Impact of β on the reservation levels
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(b) Impact of β on profit and its variability

Figure 3.7: Impact of Mean Evolution Jump Size β (θ = 1.3, λ = 0.15, γ = 3, ψ =
0.95, Lf = 2)
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(a) Impact of γ on the reservation levels
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(b) Impact of γ on profit and its variability

Figure 3.8: Impact of Demand Variance Coefficient γ (θ = 1.3, λ = 0.15, β =
0.2, ψ = 0.95, Lf = 2)

the firm’s contingencies are very limited in that case. Finally, Figure 3.9 demon-

strates that as we gradually increase the service level constraint from 87.5% to 99%,

the value of the flexible mode increases. Note that the expected profit associated with

a 99% service level is almost 200 million dollars less than that associated with a 95%

service level. This is by no means a small compromise, and firms should consider this

tradeoff when making service level decisions.
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(a) Impact of ψ on the reservation levels
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(b) Impact of ψ on profit and its variability

Figure 3.9: Impact of Service Level Target ψ (θ = 1.3, λ = 0.15, β = 0.2, γ = 3, ψ =
0.95, Lf = 2)
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(a) Impact of θ on the reservation levels
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(b) Impact of θ on profit and its variability

Figure 3.10: Impact of Equipment Price Increase Ratio θ (λ = 0.15, β = 0.2, γ =
3, ψ = 0.95, Lf = 2)

How much of the total capacity should be reserved through the flexible

mode? When should this capacity be exercised?

We note that the conditions for dual-mode procurement correspond to the business

environment in which Intel operates; i.e., the forecast and realization shocks, the

forecast uncertainty, and service levels are all high. Thus, dual-mode procurement
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(a) Impact of λ on the reservation levels
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(b) Impact of λ on profit and its variability

Figure 3.11: Impact of Flexible Price Reservation Ratio λ (θ = 1.3, β = 0.2, γ =
3, ψ = 0.95, Lf = 2)
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(a) Impact of Lf on the reservation levels
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(b) Impact of Lf on profit and its variability

Figure 3.12: Impact of Flexible Mode Leadtime Lf (θ = 1.3, Λ = 0.15, β = 0.2, γ =
3, ψ = 0.95)

should be seriously considered in this industry, which has traditionally used single-

mode procurement. The notion that flexibility is only necessary for peak periods is

also a misconception. Actually, the flexible mode may be optimally deployed whenever

there is a forecast shock or a realization shock, both of which occur frequently during

the ramp-up stage of the product life cycle, instead of just at the peak. Although the

value of the flexible mode decreases as its total price (i.e., θ) and/or reservation price

(i.e., λ) increase, as long as the flexible leadtime (Lf = 2) is significantly shorter than
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the base one, the firm continues to reserve more than 8% of its total capacity through

the flexible mode even when the flexible mode is 60% more expensive (Figure 3.10)

or when the firm has to pay 25% up front (Figure 3.11). When the flexible leadtime

increases, however, the value of flexibility dramatically decreases and the firm tends

to depend more on the base mode (Figure 3.12).

For all the above examples we also record the corresponding profit variability in

terms of the coefficient of variation. It turns out as cost, uncertainty, service level, or

flexible leadtime increases, the expected total profit decreases while the profit vari-

ability increases.

How can Intel quickly evaluate different flexible options during contract

negotiations?

One efficient way for Intel to select offers from the contract menu is to compare the

position of different leadtime and price combinations for the flexible mode on an iso-

profit graph, where the flexible price is adjusted by two parameters: the price increase

ratio θ and the reservation price ratio λ. Figure 3.13(a) demonstrates the iso-profit

curves under a fixed θ with value 1.3. The (Lf , λ) pairs on each of the solid lines

lead to the same expected total profit under the optimal reservation decision, while

lines towards the lower-left corner correspond to higher profits than those towards

the upper-right corner. Intel can utilize these curves in two ways. The curves demon-

strate the dominance between different contract options: for example, contract A

with Lf = 1, λ = 14%, and an expected profit of $10.950 billion should be preferred

to contract B with Lf = 3, λ = 12.8%, and an expected profit of $10.893 billion.

Alternatively, each curve quantifies the maximum reservation price Intel should be

willing to pay for added flexibility; for example, Intel can pay up to 20% of the total

price up front and decrease the flexible leadtime to 0 while still keeping its profits at

the same level as in contract B. Similarly, Figure 3.13(b) demonstrates the iso-profit

curves under a fixed λ with value 15%. With the assistance of such iso-profit graphs,

Intel will know the bottom-line impact of different alternatives while negotiating with

its supplier and will make informed tradeoffs between flexibility and cost. Besides the

expected payoff, we also simulate the profit variability associated with different (lead-

time, price) combinations. For each of the iso-profit curves in the above examples, it
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(b) Iso-profit curve when λ = 0.15

Figure 3.13: The Iso-Profit Curves for Fixed θ and λ (β = 0.2, γ = 3)

turns out the profit variability first decreases then increases as we move from the left

end of the curve to the right. For instance, on the $10.950B curve in Figure 3.13(a),

contract A with Lf = 1 leads to the smallest profit c.v. of 17.20%, compared to the

Lf = 0 case with a c.v. of 17.53% and the Lf = 3 case with a c.v. of 18.91%. This

implies that a risk-averse firm would prefer a contract term locating in the middle of

an iso-profit curve rather than the contracts locating on the two ends.

3.4.3 The Impact of Risk Attitude

Since a firm’s capacity planning involves a substantial up-front investment with un-

certain future revenues, one natural extension of our model is to consider the impact

of risk aversion. Van Mieghem (2003) reviews several methods to model a firm’s

risk aversion and hedging behavior during capacity investment. One predominant

approach is to use a concave Bernoulli utility function and assume that the firm op-

erates to maximize its expected utility instead of profit. We adopt this approach and

inspect how the firm’s reservation decisions BT and F T , as well as the profit and its

variability, would change if a concave increasing utility function G(·) is applied to the

reservation stage:

max
BT≥0;F T≥0

EM G(F(BT
, F

T
, M |�µ1−Lb)),
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where F(BT , F T , M |�µ1−Lb) = JN−Lf (BT , F T , M, Σ|�µ1−Lb)−rbB
T−rfF

T and JN−Lf (·)
is the value function of the last-stage execution-level optimization problem.

We investigate the case where G(·) is a power function: G(z) = zρ, where 0 < ρ ≤ 1

(see Liu and van Ryzin 2011 for a similar treatment). Note that G(z) is concave

increasing and the smaller the ρ, the more risk-averse the firm tends to be (i.e., ρ = 1

corresponds to the risk neutrality). Also note that A(z) = −G��(z)

G�(z)
= 1−ρ

z
is decreasing

in z and R(z) = zA(z) = 1− ρ is constant in z. Hence, G(z) has decreasing absolute

risk aversion (DARA) and constant relative risk aversion (CRRA), two properties

that are consistent with experimental and empirical findings about the risk-averse

behavior of individuals and corporations (Friend and Blume 1975).

Table 3.2: Risk Aversion Case with Power Utility Function

(θ = 1.3, λ = 0.15, β = 0.2, γ = 3, ψ = 0.95)
leadtime Lb = 0 Lb = 4, Lf = 2

ρ 1 7/8 5/8 3/8 1 7/8 5/8 3/8
BT 25.7 25.8 25.9 27.3 27.1 27.3 27.3 27.6
F T 0 0 0 0 3.4 3.5 3.7 3.9
F

T

BT +F T 0% 0% 0% 0% 11.15% 11.36% 11.94% 12.38%
Utility 1.12 e10 6.21 e8 1.90 e6 5.85 e3 1.09 e10 6.05 e8 1.87 e6 5.78 e3

Profit (B) 11.238 11.230 11.228 11.222 10.893 10.891 10.888 10.886
Profit Std 1.961 1.957 1.954 1.950 1.984 1.975 1.965 1.959
Profit c.v. 17.45% 17.43% 17.40% 17.38 % 18.21% 18.13% 18.04% 17.98%

In a numerical analysis (with parameters θ, λ, β, and γ taking values from a

wide range set), we observe that as the firm becomes more risk-averse, it reserves

more capacity from both the base and flexible modes. Furthermore, F T /(BT + F T )

increases, which implies that the flexible mode becomes a more attractive option. The

firm’s expected profit decreases due to risk aversion. However, the profit variability

(represented by both the standard deviation and c.v.) also decreases. Table 3.2

presents a representative scenario where all the key parameters take their standard

values. As a benchmark, we also consider a setting where the base mode has zero

leadtime; i.e., the firm enjoys the maximum level of flexibility and cost efficiency.

Even under this ideal setting, the coefficient of variation of the total profit is around

17%. This level is inevitable due to the demand forecast evolution process and the
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tactical nature of the problem. That is, risk aversion removes a limited portion of the

profit variability arising from operational demand-supply mismatches.

3.5. Conclusion

Capital equipment purchasing is a crucial yet difficult task for many semiconductor,

electronic, automotive, and pharmaceutical firms. In this chapter, we proposed a dual-

mode equipment procurement model (DMEP) to guide firms through this complex

task. DMEP serves three roles. On the strategic level, it provides decision support to

contract negotiation by comparing alternatives with different levels of flexibility and

costs. On the tactical level, it guides capacity reservation decisions by characterizing

the amount of capacity that should be reserved from different procurement modes.

On the operational level, it quantifies procurement amounts by considering the latest

demand information as well as the installed capacity. By incorporating interactions

between these three levels of decision-making, DMEP enables a flexible supply chain

that adapts effectively to changing demand conditions. It helps firms better manage

their equipment procurement process, eliminate excess capacity, and thus lower their

costs. It benefits suppliers by enabling a risk-sharing mechanism through up-front

capacity reservation and the elimination of soft orders.

DMEP formalizes and extends the approach that Intel has used in the past to price

and exercise capacity options with reduced leadtimes for a few types of fabrication

equipment (Vaidyanathan et al. 2005). It also complements recent improvements

in demand forecasting methodologies at Intel (Wu et al. 2010). The dual-mode

procurement approach described here is being used at the strategic and tactical levels

today at Intel for all types of fabrication equipment, and will soon be used at the

operational level. Implementation of the approach has leveraged model structure and

details to provide the types of sensitivity analysis needed by Intel decision-makers to

understand and take advantage of the subtleties of this improvement in the capital

equipment acquisition process. As demonstrated by Table 3.5, the annual savings

on capital procurement at Intel due to implementing DMEP are estimated to exceed

tens of millions of dollars.
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Table 3.3: Comparison of DMEP and the Default Single-Sourcing Approach at Intel
(For the numerical analysis, unless otherwise stated, θ = 1.3, λ = 0.15, β = 0.2,
γ = 3, and ψ = 0.95)

The impact of flexible cost increase ratio θ
θ 1.2 1.3 1.4 1.5 1.6
Expected Profit with DMEP (in billions) 10.905 10.893 10.881 10.872 10.861
Expected Profit with Default Approach 10.802 10.802 10.802 10.802 10.802(approximation, in billions)
Improvement 0.95% 0.84% 0.73% 0.65% 0.55%

The impact of flexible reservation ratio λ
λ 0.05 0.10 0.15 0.20 0.25
Expected Profit with DMEP (in billions) 11.036 10.957 10.893 10.847 10.812
Expected Profit with Default Approach 10.802 10.802 10.802 10.802 10.802(approximation, in billions)
Improvement 2.17% 1.43% 0.84% 0.42% 0.09%

The impact of flexible mode leadtime Lf

Lf 0 1 2 3 4
Expected Profit with DMEP (in billions) 11.001 10.918 10.893 10.847 10.802
Expected Profit with Default Approach 10.802 10.802 10.802 10.802 10.802(approximation, in billions)
Improvement 1.84% 1.07% 0.84% 0.42% 0.00%

The impact of γ
γ 0 1 2 3 4 5
Expected Profit with DMEP (in billions) 11.09 11.031 10.965 10.893 10.817 10.742
Expected Profit with Default Approach 10.993 10.904 10.807 10.802 10.603 10.495(approximation, in billions)
Improvement 0.88% 1.16% 1.46% 0.84% 2.02% 2.35%

The impact of mean jump size β
β 0% 10% 20% 30% 40% 50%
Expected Profit with DMEP (in billions) 11.998 11.574 10.893 10.023 8.989 7.786
Expected Profit with Default Approach 11.905 11.446 10.802 9.755 8.611 7.271(approximation, in billions)
Improvement 0.78% 1.12% 0.84% 2.75% 4.39% 7.08%

Despite its many advantages, DMEP also has several limitations. First, we in-

vestigated a situation in which the firm procures only one type of equipment from

its supplier. This simplification enabled us to demonstrate the dynamics of the al-

gorithm without introducing complexity. The DMEP model can be generalized to

a multi-equipment scenario in which (1) the firm considers ordering from the base

and flexible modes for all types of equipment with different leadtimes in each period

and (2) the available capacity in each period is constrained by the lowest capacity
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among all the types of equipment. As expected, as the number of types of equipment

increases, the interactions and the complexity of the problem also increase. Having

said that, firms should consider DMEP only for equipment on the critical path of ca-

pacity planning as the rest (in Intel’s case the types that have shorter leadtimes and

are cheaper) will not impose additional constraints on the system. Yet, alternative

formulations for multi-equipment procurement would be valuable. These alternative

formulations should consider the multi-tool problem as a portfolio of tools, suppliers,

and potentially approaches other than DMEP. Second, we formulated the procure-

ment problem as a linear program. As such, DMEP is better suited to providing

the fraction of orders from each mode rather than the actual procurement quanti-

ties. However, if the intention is to use DMEP to obtain the specific order quantities,

generalizing the DMEP model to an integer program would be preferable. Finally,

we ignored the inventory level decision of the firm and assumed a build-to-order sys-

tem. At the top level of the framework we are solving a strategic problem possibly

years in advance of actual demand realization. Given this long leadtime, there is

huge uncertainty regarding not only the demand but also the supply process (e.g.,

yields). Therefore, we simplified the execution-level problem and concentrated on the

most critical decisions (that is, the capacity levels to be executed) to avoid including

additional noise. The decision to not include product inventory is also consistent

with Intel’s strategy of erring on the side of ordering too much equipment, and is

considered to be a better initial approach than tackling too many frontiers at the

same time. If we were to include product inventories, we would see reductions in the

total capacity level as capacity and inventory are substitutes. We would like to note

that the execution-level algorithm can be modified to include the option of holding

product inventory easily. One must define a decision variable for product inventory

for each period and parameters for inventory holding cost and salvage value. As a

result, the execution-level problem would be slightly more complicated since, in addi-

tion to the base and flexible capacity execution levels, the optimization will also need

to calculate the optimal product inventory levels as well.

This chapter took an initial, yet important, step towards formulating the complex

dual-mode equipment procurement problem in a practical and insightful way. In

capital-intensive industries, capital expenditures often constitute about one quarter
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of the total revenue and roughly two thirds of the manufacturing costs. Given the

millions of dollars that are at stake, we believe that equipment procurement problems

will attract more attention from academia. Fortunately, there is plenty of room for

interesting future work around this topic.
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Chapter 4

Strategic Capacity Allocation in

Commodity Trading with a Spot

Market

4.1. Introduction

As the key ingredient for the world’s most commonly used metal – steel, which rep-

resents almost 95% of all metal used per year (Blas 2009), iron ore has always been

one of the most important commodities traded in the global market. Christopher

LaFemina, mining analyst at Barclays Capital, once said that “Iron ore may be more

integral to the global economy than any other commodity, except perhaps oil (Blas

2009).” For the past decade, due to the rapid development of China and other Asian

countries, the already-enormous iron ore market has been growing at 10% per annum

on average; and in 2010, the seaborne iron ore market, that is, iron ore to be shipped

to other countries across the ocean, reached a historical revenue size of $88 billion

(Serapio and Trevethan 2010). Given such a large amount of capital at stake, players

in this industry, especially the iron ore producers, must be extremely cautious with

their global operational strategies, such as capacity planning, pricing, distributing,

etc., since even a small misplay could lead to hundreds of millions of dollars’ loss of

revenue as well as a potentially unfavorable position in relation to the competition.

58
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Because of the intensive investment in capital equipment and transportation in-

frastructure that is required at the initial stage of the mining operations, global iron

ore production has been concentrated in the hands of a few major players. The world’s

three largest iron ore producers, Vale S.A. from Brazil, Rio Tinto and BHP Billiton

from Australia, control over two-thirds of the world’s iron ore supply and jointly ac-

count for more than 23% of the total assets of the Market Vectors Steel ETF (Ausick

2010). In the past, the iron ore business for these big suppliers had been straightfor-

ward: Their clients were mostly state-owned steel manufacturers with blast furnaces,

such as Nippon Steel of Japan, POSCO of Korea, US Steel, and BaoSteel of China.

These steel mills had largely predictable business and preferred long-term relation-

ships with the iron ore suppliers; as a result, the Big Three sold almost all of their

iron ore through forward contracts at a pre-negotiated price, which was called the

World Benchmark Price (Lee 2007). In this relatively stable environment, the key to

iron ore suppliers increasing their profits lies in their ability to negotiate the forward

price and to reduce the operating costs.

However, changes to the system have been occurring in recent years. As China’s

economy continues to grow by double digits, its demand for steel, and consequently

iron ore, soared along with the booming infrastructure constructions throughout the

country. For instance, China imported 275 million metric tons of iron ore in 2005,

and that number jumped to around 320 million in 2006, suggesting a 16.4% increase

(Lee 2007). As a result, the delivering capacity negotiated through forward contracts

between the iron ore producers and the steelmakers has often proved to be insufficient,

creating certain spot markets where some local small iron ore suppliers filled the gap

by trading with the steelmakers at the then-current spot price, which is usually higher

than the fixed contract price. This phenomenon implies a potential revenue loss for

the Big Three since they have committed almost all of their capacity to the contract

channel and hence cannot benefit from the high spot price. For instance, in 2005,

nearly half of the 275 million metric tons of iron ore imported to China were purchased

based on spot prices; while the Big Three together only supplied 25 million metric

tons through the spot market. Hence, it is no longer optimal for the big iron ore

suppliers to only use forward contracts to deploy their capacity.

Given this emerging situation, the big iron ore suppliers are faced with at least
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two challenges: first, constrained capacity that limits the firms’ ability to meet the

continuous demand surge in China and other Asian countries; second, the need for

an efficient strategy to properly allocate sales quantities to both the contract channel

and the spot channel in order to achieve a tradeoff between stable production from

the former and a potentially higher profit margin from the latter. The solution to the

first challenge is of course expansion, which for the mining industry usually implies

hundreds of millions of dollars’ investment and several years’ constructing operations.

Rio Tinto, for example, has committed about $6 billion of new investment in the

Pilbara region of Western Australia since 2010, with the majority to be spent on

expansion.1 Although crucial, this strategic level decision is not overly complex to

make, since much randomness can be ignored due to the pooling effect over such a

long planning horizon.

The second challenge, which lies more on the tactical level with a planning horizon

of quarters, is nevertheless trickier to tackle. On one hand, the business environment

contains several random factors, such as the total contract channel demand and the

equilibrium spot price, both of which contribute to a stochastic planning problem.

On the other hand, the decisions are intertwined since the capacity that the iron ore

supplier allocates to the contract channel may finally affect the spot price through

impacting the demand and supply curves in the spot market. One recent strategic

move of the Big Three in terms of utilizing the spot price was to shift the long-term

contract2 mechanism from an annual-review basis into a quarterly-review basis and

to set the contract price based on the previous period’s average spot price. “This

change has come from the suppliers’ desire to see prices more closely mirror the

spot market · · · following several years in which spot prices have exceeded long-

term contract prices (Burns 2010).” Meanwhile, the big suppliers also expect to

significantly strengthen their presence in the spot market. Graeme Stanway, former

chief iron-ore consultant at Rio Tinto, told the authors in November 2010 that “spot

tonnes had only previously made up a small part of the sales portfolio (of Rio Tinto)

but would be gradually increased to 50%.” However, such decisions are not necessarily

established based on rigorous quantitative analysis.

How the big iron ore suppliers should manage the aforementioned two selling

1http://www.riotintoironore.com/ENG/operations/301\_expansion\_projects.asp
2In this chapter we use forward contract and long-term contract interchangeably.
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channels by strategically allocating capacity between the forward contract and the

spot market is the focus of this research. Due to the complexity of the actual business

setting, we need to make two simplifying assumptions here: 1. We eliminate the

concern about competition by treating the Big Three as one company and calling it

the “Supplier.” 2. We start with a single period model in which the forward contract

price is fixed according to the previous period’s realized spot price and hence the

supplier only has quantity decisions to make; however, there can be multiple decision

stages within that single period. We then investigate several versions of the problem

with different ways to model the spot market to generate far-ranging insights with

diverse practical emphasis. More specifically, we first study a case in which the spot

market is open, i.e., the spot price is an exogenous random variable not affected by

the players’ actions. We show that if the contract channel demand is unlimited,

then the supplier will adopt a non-extreme policy, i.e., allocating part of the capacity

to the contract channel and the rest to the spot channel, only if he is risk-averse.

When the contract channel demand is stochastic and satisfies a bivariate normal

distribution with the spot price, however, the supplier’s expected profit function is

concave-convex and an interior optimal policy may exist even when the supplier is risk-

neutral. Furthermore, the supplier tends to allocate more quantity to the spot channel

if the contract channel demand and the spot price are more positively correlated, and

he should allocate more to the contract channel if he is more risk-averse. We then

investigate the case where the spot market is “closed,” i.e., the equilibrium spot price

is endogenously determined by the spot demand curve and the spot supply curve,

both of which are affected by the supplier’s allocation decision. We demonstrate that

if the shifting effect of the supplier’s second stage quantity decision on the default spot

supply curve is stronger than the shifting effect of the unfulfilled first stage demand on

the default spot demand curve, then the supplier’s first stage expected profit function

is convex-concave and an interior optimal solution may exist; otherwise, an extreme

policy would be optimal in the first stage. We perform numerical analysis to gauge the

sensitivity of the parameters and generate additional managerial insights. It should

be emphasized that although this research is motivated by the iron ore industry, the

modeling approach and managerial insights should be applicable and illuminative to

other similar commodity trading businesses as well.
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4.2. Literature Review

Two bodies of literature are most related to this research: distribution channel man-

agement and the dynamics of spot markets and forward contracts.

The multi-channel strategy in the context of procurement management has been

well studied for decades. Recent work includes Minner (2003), who provides a thor-

ough review of the multi-source inventory control models, and Chao et al. (2009) and

Peng et al. (2010), who investigate multi-sourcing capacity expansion problems with

lost sales and backorders, respectively. In the recent decade, multi-channel distribu-

tion strategies also received significant attention from both industry and academia

due to the prevalence of e-commerce and other internet-enabled opportunities. Chi-

ang et al. (2003) identify how a manufacturer may open a direct selling channel to

compete with its own retailers if the customer acceptance of the direct channel is

strong enough. Reinhardt and Levesque (2004) use microeconomics to study how a

firm should allocate its sales quantity between an online direct channel and an offline

channel to best trade off cost, revenue, and competitive behavior; they demonstrate

that it may not be optimal for the firm to sell in both channels. Chen et al. (2008) in-

troduce a consumer channel choice model and gauge its impact on the manufacturer’s

choice between a direct channel and a traditional retail channel. Tsay and Agrawal

(2004) provide a comprehensive review on the modeling of multi-channel distribution

systems. In this chapter, the supplier’s allocation of production capacity is essentially

a channel management problem. However, instead of the online and offline channels,

we investigate the supplier’s choice between a contract channel and a spot market

channel; moreover, in our model the supplier is dealing with manufacturers rather

than end consumers.

In relation to modeling the spot market, up to now, most researchers have chosen

to work with an open spot market, where the spot price is independent of the actions

of individual market participants. A typical model treats the spot price as a stochastic

variable, the distribution of which is known to the decision-maker (Wu et al. 2002,

Golovachkina and Bradley 2002, Seifert et al. 2004, etc.). A more elegant approach

to model a multi-period problem is to assume that the spot price follows a Markovian

stochastic process (Kalymon 1970, Assuncao and Myer 1993, Secomandi 2010) or a

geometric Brownian motion (Dixit and Pindyck 1994, Li and Kouvelis 1999), the
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former of which applies to the discrete case and the latter the continuous case. In

the first half of this chapter, we examine a preliminary model where the spot market

is open and the spot price follows a bivariate normal distribution with the contract

channel demand. We model it in a way similar to Seifert et al. (2004). The difference

is that in their model a manufacturer uses the spot market as a backup sourcing

channel, whereas in our problem a capacitated supplier treats the spot market as an

extra distribution channel.

Some researchers have attempted to model a closed spot market, where the ac-

tions of market participants can affect the price. A typical approach is to identify the

spot market price using the rational expectations equilibrium approach (Grossman

1981, Kyle 1989, etc.) – at the equilibrium, the total supply quantity derived from

the sellers’ supply curves must equal the total demand quantity obtained according

to the buyers’ demand curves. Lee and Whang (2002) utilize this concept and exam-

ine the spot trading of excess inventory in terms of a secondary market, where the

equilibrium price is endogenously determined. They demonstrate that with a larger

number of buyers, the secondary market can increase the allocation efficiency of the

supply chain, but not necessarily the sales of the manufacturer. Kleindorfer and

Wu (2003) integrate long-term contracting with spot trading via B2B exchanges for

capital-intensive industries. They use a general framework based on transaction cost

economics to provide a synthesis of the existing literature. Some researchers directly

make spot price the supplier’s decision variable. Erhun et al. (2000), for example,

look at a decentralized supply chain where a manufacturer procures capacity from a

single supplier through a spot market over multiple periods, where the spot price is

set by the supplier. They show that double marginalization can be reduced or even

entirely eliminated by increasing the number of trading periods. In the second half

of this chapter, we focus on modeling the formation of the spot price endogenously,

as a consequence of the equilibrium outcome. A unique feature of our model is that

the supplier’s single quantity decision can affect both the demand curve and the sup-

ply curve in the spot market, since part of the unfulfilled demand from the contract

channel will later switch to the spot market. Haksoz and Seshadri (2007) carry out a

complete survey on the use of spot markets to manage procurement in supply chains.

There has also been some work that discusses the employment of both a forward
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(fixed-price) contract and a spot market as distribution channels. Allaz (1992) builds

a two-period model of an oligopoly producing a homogeneous good which is traded

first on a forward market and then on a spot market. He shows that forward trans-

actions can be used strategically by the producers to improve their positions in the

spot market. Liski and Montero (2006) investigate an infinitely repeated oligopoly

in which firms participate in both the spot market and forward transactions. They

demonstrate that forward trading enables firms to achieve collusive profits. These

two works simplify the modeling of the spot price by either introducing an exogenous

random variable or assuming a linear inverse demand curve. In another closely related

work, Mendelson and Tunca (2007) investigate a dynamic supply chain trading game

between a supplier and several buyers who first sign fixed-price contracts and then

trade in the spot market once the private information of each party is revealed. In

this scenario, the spot price is determined based on rational expectations equilibrium.

They find that while spot trading helps reduce prices, increase the produced quantity,

and improve supply chain profits, it does not eliminate the fixed-price contracting.

In contrast to our work, however, none of the above papers assumes a constrained

capacity for the supplier, which is indeed the case with iron ore producers; nor is there

a connection between the contract channel demand and the spot market demand.

The rest of this chapter is organized as follows: In Section 4.3, we introduce the

basic setting of the business problem and define the key parameters of the model. In

Section 4.4, we discuss the supplier’s capacity allocation strategy under an open spot

market, where the equilibrium spot price is given by an exogenous random variable.

Section 4.5 extends the investigation to a closed spot market scenario in which the

equilibrium spot price is determined based on the demand and supply curves in the

spot market, both of which are affected by the supplier’s capacity allocation decision.

Section 4.5.4 presents numerical analysis. Section 4.6 concludes the chapter and

delivers managerial insights.

4.3. The Business Setting

Figure 4.1 demonstrates the basic setting of the business problem. Consider a com-

modity trading supply chain in which an oligopoly Supplier with total capacity K
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(within a certain period) determines how to allocate his potential sales quantity be-

tween a forward contract channel and a spot market channel to maximize his total

expected profit. The contract channel has a given price w, which in reality is fixed ac-

cording to the previous period average spot price and hence is not a decision variable.

The spot price ps is either an exogenous random variable with a known distribution,

or is to be endogenously determined by the demand and supply curves. A group

of large buyers with aggregated stochastic demand D treats the forward contract

channel with a higher priority, that is, D is first satisfied via the contract channel.

This happens in practice because large steel manufacturers with high volume prefer

a stable iron ore price to minimize procurement cost volatility. If the quantity Λ

that the supplier allocated to the contract channel is insufficient, however, part of

the unfulfilled demand (D − Λ)+ will then switch to the spot market. Depending on

whether the spot price is exogenous or endogenous, the supplier will allocate either

all or part of his leftover capacity K −min(Λ, D) to the spot market for sale. Note

that besides the oligopoly supplier and the big buyers, for the most comprehensive

model we assume there are some small local suppliers and buyers dealing in the spot

market as well, leading to the default spot supply and demand curves.

!"#$%&$'!(#)*$&(*!
%+*,!-./'!0$+(/!!"

1!(#22#'+*3!4#%!
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Figure 4.1: Commodity Trading Participants and Their Business Relationships
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4.4. Strategic Allocation under an Open Spot

Market

Before investigating the comprehensive case where the commodity supplier’s quantity

decision can affect the equilibrium spot price, we first discuss a simpler setting in

which the spot market is open and the equilibrium spot price is described by an

exogenous random variable. This discussion can be instructive to small- or medium-

sized commodity suppliers that do not have large enough market influence to impact

the formation of the spot price. In a single period problem, a commodity supplier S

with a total capacity K tries to divide the capacity between two selling channels: a

contract channel with a fixed price w and a spot market with a random price ps, which

has a p.d.f. of φs(·), a mean of µs, and a standard deviation of σs. The allocation

decision is made before the randomness of the spot price is resolved. We assume a

unit production cost of c that is lower than both w and ps.

4.4.1 Unlimited Contract Channel Demand

If the supplier has a tight capacity that is with certainty lower than the potential

contract channel demand, i.e., the contract demand can be treated as unlimited, then

the risk-neutral supplier’s optimal expected profit is given by πS = max
0≤Λ≤K

Eps
[wΛ +

ps(K − Λ) − cK], where the decision variable Λ represents the amount of capacity

allocated to the contract channel. It is trivial to verify that the supplier’s optimal

policy under this scenario is of an extreme type: if µs ≤ w, then Λ∗ = K; if µs > w,

then Λ∗ = 0.

Now, assume the supplier is risk-averse and operates to maximize his mean-

variance utility. That is,

πS = max
0≤Λ≤K

EΠS(Λ)− kV arΠS(Λ), (4.4.1)

where ΠS(Λ) = wΛ+ ps(K−Λ)− cK, and k > 0 represents the supplier’s risk-averse

magnitude. His optimal allocation policy is described in the following proposition:

Proposition 4.4.1. Under risk aversion, the supplier’s optimal allocation decision
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Λ∗ is given by:

Λ∗ =






K, if µs ∈ (0, w]

K − µs − w

2kσ2
s

, if µs ∈ (w, w + 2kσ
2

s
K]

0, if µs > w + 2kσ
2

s
K

(4.4.2)

Proposition 4.4.1 says that when the supplier is risk-averse, he may adopt a mixed

portfolio by selling through both the contract channel and spot channel if the expected

spot price is higher than the fixed contract price but not too high. The more risk-

averse the supplier is, the more quantity he should allocate to the contract channel.

4.4.2 Stochastic Contract Channel Demand

If the supplier’s total capacity is relatively high, though, it is more reasonable to also

treat the contract channel demand as a random variable. Here we adopt the idea

of Seifert et al. (2004) and assume that the spot price ps and the contract channel

demand D follow a bivariate normal distribution, i.e., (ps, D) ∼ BN(µs, µd, σ
2

s
, σ2

d
, ρ).

Let φs,d(·) be the joint density function of the bivariate normal distribution and let

φd(·) represent the p.d.f. of the normal distribution N(µd, σ
2

d
). ρ > 0 implies a

positive correlation between ps and D; this is usually the case since a high contract

channel demand likely suggests the popularity of the commodity and hence a high

spot price as well. In contrast, ρ < 0 means ps and D are negatively correlated; this

could also be the case if there is limited total demand in the market, and thus a

high contract channel demand would imply a relatively lower spot demand, leading

to a lower spot price. The sequence of events within a period is: First, the supplier

allocates Λ ∈ [0, K] to the contract channel. Then, both D and ps are realized. Last,

the supplier sells the leftover capacity K −min(Λ, D) in the spot market.

We start by investigating a risk-neutral case. The supplier’s optimal expected

profit is given by πS = max
0≤Λ≤K

Eps,D ΠS(Λ), where

ΠS(Λ) = w min(Λ, D) + ps(K −min(Λ, D))− cK

= (w − ps) min(Λ, D) + (ps − c)K. (4.4.3)
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More explicitly, the objective function can be written as3

EΠS(Λ) =

�
Λ

x=0

x

� ∞

ps=0

(w − ps)φs,d(ps, x)dpsdx

+

� ∞

x=Λ

Λ

� ∞

ps=0

(w − ps)φs,d(ps, x)dpsdx + (µs − c)K

=

�
Λ

x=0

x[w − (µs + ρ
σs

σd

(x− µd))]φd(x)dx

+Λ

� ∞

x=Λ

[w − (µs + ρ
σs

σd

(x− µd))]φd(x)dx + (µs − c)K

= (w − µs + ρ
σs

σd

µd)[Λ(1− Φd(Λ)) +

�
Λ

0

xφd(x)dx]

−ρ
σs

σd

[Λ

� ∞

Λ

xφd(x)dx +

�
Λ

0

x
2
φd(x)dx] + (µs − c)K. (4.4.4)

Proposition 4.4.2 below captures the supplier’s optimal allocation strategy.

Proposition 4.4.2. Assume µd is large enough so that φd(0) ≈ 0; we then have:

If ρ ≥ 0, then EΠS(Λ) is concave for Λ ∈ [0, max(0, min(K, µd + (w−µs)σd

ρσs

))] and

convex decreasing for Λ ∈ (max(0, min(K, µd + (w−µs)σd

ρσs

)), K]. The supplier’s optimal

allocation decision Λ∗ is given by

Λ∗ =

�
min(K, Λ̂), if µs ≤ w

0, if µs > w

(4.4.5)

where Λ̂ satisfies (w − µs + ρ
σs

σd

µd)(1− Φd(Λ̂))− ρ
σs

σd

�∞
Λ̂

xφd(x)dx = 0.

If ρ < 0, then EΠS(Λ) is convex for Λ ∈ [0, max(0, min(K, µd + (w−µs)σd

ρσs

))] and

concave increasing for Λ ∈ (max(0, min(K, µd+ (w−µs)σd

ρσs

)), K]. The supplier’s optimal

allocation decision Λ∗ is of an extreme type and given by:

Λ∗ =

�
K, if µs ≤ w; or µs > w, EΠS(K) ≥ (µs − c)K

0, if µs > w, EΠS(K) < (µs − c)K
(4.4.6)

We see from above that when the contract demand D and the spot price ps are

3If random variables X and Y satisfy a bivariate normal distribution BN(µX , µY , σ2
X , σ2

Y , ρ),
then the conditional distribution Y |X ∼ N(µY + σY

σX
ρ(X − µX), (1− ρ2)σ2

Y ).
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positively correlated, i.e., ρ ≥ 0, the supplier may only allocate part of his capacity to

the contract channel even if the expected spot price µs is lower than the fixed contract

price w. This result is in stark contrast with the unlimited contract demand scenario,

in which case the optimal policy is of an extreme type – either allocating all capacity

to the contract channel or allocating all to the spot channel, and an interior optimizer

may exist only if the supplier is risk-averse. Below we provide an explanation for why

an interior optimizer exists for the risk-neutral case here: Since we always allow the

supplier to relocate his unused capacity (Λ−D)+ from the contract channel back to the

spot channel, the only circumstance that may penalize the supplier for over-allocating

quantity to the contract channel would be that both the realized contract demand

and the realized spot price are high (thus the supplier wouldn’t have extra capacity

to benefit from the high spot price), which is only likely to happen if ρ is positive.

When D and ps are negatively correlated, i.e., ρ < 0, though, the policy tends to

be extreme again. However, even when the expected spot price µs is higher than

the contract price w, the supplier may still preallocate all quantity to the contract

channel. The reason is that this time a high contract channel demand would signal

a low spot market price, and hence it is “safe” to exploit the contract channel first.

The following proposition focuses on the ρ ≥ 0 case that is more relevant in practice

and discusses some comparative statics results with respect to the interior maximizer

Λ̂. More detailed analysis on the monotonicity of the optimal decision in the actual

business setting will be implemented numerically in Section 4.4.3.

Proposition 4.4.3. (Comparative Statics) The interior maximizer Λ̂ is increasing

in w and µd, and decreasing in µs. In addition, if Λ̂ ≥ µd, then Λ̂ is increasing in σd,

and decreasing in σs and ρ.

Next, we discuss the impact of the supplier’s risk attitude on his optimal capac-

ity allocation decision. We still adopt a mean-variance approach; hence, when the

commodity supplier is risk-averse, he solves the following optimization problem:

πS = max
0≤Λ≤K

Eps,DΠS(Λ)− kV arΠS(Λ), (4.4.7)

where ΠS(Λ) = (w−ps) min(Λ, D)+ (ps− c)K = (w−ps)[Λ− (Λ−D)+]+ (ps− c)K.

We have already explicitly described EΠS(Λ) in Equation (4.4.4). Equation (4.4.8)
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and (4.4.9) below further capture V arΠS(Λ) and its first order derivative with respect

to Λ. Unfortunately, the equations are too complex and one needs to resort to nu-

merical methods for a solution. On a high level, let Λ̂ denote the solution to the first

order condition ∂EΠS(Λ)

∂Λ
− k

∂V arΠS(Λ)

∂Λ
= 0; then the optimal allocation decision should

be one of 0, K, and Λ̂, whichever leads to the highest utility.

V arΠS(Λ)

= (1− ρ
2)σ2

s
[Λ2 +

�
Λ

0

(Λ− x)2
φd(x)dx− 2ΛE(Λ−D)+ + K

2]

+(K − Λ)2
ρ

2
σ

2

s
+

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))
2(Λ− x)2

φd(x)dx

+2(K − Λ)ρ
σs

σd

µd

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))(Λ− x)φd(x)dx

−2(K − Λ)ρ
σs

σd

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))x(Λ− x)φd(x)dx

−[

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))(Λ− x)φd(x)dx]2. (4.4.8)

∂V arΠS(Λ)

∂Λ
= 2σ2

s
Λ− 2(1− ρ

2)σ2

s
ΛΦd(Λ)− 2Kρ

2
σ

2

s

+2(K − 2Λ)ρ
σs

σd

µd

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))φd(x)dx

+2(2Λ−K + µd)ρ
σs

σd

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))xφd(x)dx

−2ρ
σs

σd

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))x
2
φd(x)dx

+2

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))
2(Λ− x)φd(x)dx

−2

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))(Λ− x)φd(x)dx

�
Λ

0

(w − µs − ρ
σs

σd

(x− µd))φd(x)dx.

(4.4.9)
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4.4.3 Numerical Analysis

In this part we concentrate on the case where the contract channel demand D and

the spot market price ps follow a bivariate normal distribution. Table 4.1 below sum-

marizes the benchmark values for all model parameters, which are based on practical

estimates and largely consistent with the future numerical study in Section 4.5.4.

We investigate how the supplier’s optimal allocation decision and the corresponding

expected profit would change with respect to six parameters: µd, µs, σd, σs, ρ, and

k, whose impacts have not been fully characterized by Proposition 4.4.3. Unless oth-

erwise stated, for all numerical examples we vary only one target parameter while

fixing the remaining parameters at their benchmark values.

Table 4.1: Benchmark Values of Model Parameters (units: K, µd, σd: million ton;
w, c, µs, σs: dollar per ton; k, ρ: no unit)

parameter value parameter value parameter value
K 300 w 150 c 80
k 0 µd 250 σd 100
ρ 0.5 µs 145 σs 20

The Impact of µd and µs

We refer to the policy of allocating all capacity to the contract channel (i.e., Λ = K)

as the total-contract policy, and the policy of allocating all the capacity to the spot

market (i.e., Λ = 0) as the total-spot policy. Figure 4.2(a) and 4.2(b) demonstrate

that: The supplier’s optimal expected profit is increasing in the average contract

channel demand µd and the average spot price µs. The profit gap between the op-

timal allocation strategy (with a mixed portfolio) and the total-contract strategy is

decreasing in µd and increasing in µs, with average profit improvements of 0.89%

and 1.28%, respectively. The profit gap between the optimal allocation strategy and

the total-spot strategy is increasing in µd and decreasing in µs, with average profit

improvements of 2.65% and 3.15%, respectively. Finally, Figure 4.3(a) shows that the

optimal contract channel allocation quantity Λ∗ is increasing in µd and decreasing in

µs, which is consistent with the result in Proposition 4.4.3.
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Figure 4.2: Profit Comparision of ΠS(0), ΠS(K), and ΠS(Λ∗) under an Open Spot
Market

The Impact of σd and σs

Figure 4.2(c) and 4.2(d) demonstrate that: The supplier’s optimal expected profit is

decreasing in both the demand variability σd and the spot price variability σs. The

profit gap between the optimal allocation strategy and the total-contract strategy is

increasing in both σd and σs, with average profit improvements of 0.9% and 1.0%,

respectively. The profit gap between the optimal allocation strategy and the total-

spot strategy is decreasing in both σd and σs, with average profit improvements of

2.70% and 2.74%, respectively. Figure 4.3(b) shows that under the assumed business

environment, the commodity supplier should allocate less capacity to the contract

channel as either the demand variability σd or the spot price variability σs increases,
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Figure 4.3: Comparative Statics for Λ∗ under an Open Spot Market

i.e., as the system becomes more volatile; this happens even when the average spot

price µs is lower than the contract price w, as long as the supplier has a fixed risk

aversion level k.

The Impact of ρ and k

Figure 4.2(e) and 4.2(f) demonstrate that: The supplier’s optimal expected profit

(utility) is decreasing in both the demand-price correlation ρ and the risk aversion

coefficient k. The profit gap between the optimal allocation strategy and the total-

contract strategy is increasing in ρ and decreasing in k, with average profit improve-

ments of 1.76% and 0.49%, respectively. The profit gap between the optimal alloca-

tion strategy and the total-spot strategy is decreasing in ρ and increasing in k, with

average profit improvements of 3.62% and 11.20%, respectively. Figure 4.3(c) shows

that the supplier should deploy his capacity fully to the contract channel if ρ < 0.

When ρ > 0, though, the optimal contract channel allocation quantity Λ∗ is decreas-

ing in ρ. In other words, the supplier should rely more on the spot channel as the

contract demand and the spot price become more positively correlated. Meanwhile,

we see that the supplier should allocate more capacity to the contract channel as he

becomes more risk-averse, i.e., as k increases.



www.manaraa.com

CHAPTER 4. STRATEGIC CAPACITY ALLOCATION 74

4.5. Strategic Allocation under a Closed Spot

Market

In Section 4.4, we discussed an open-spot-market setting in which the equilibrium

spot price is exogenously determined. This is the case if there are sufficiently many

other players in the spot market so that even the large supplier’s participation will not

impact the spot price formation. We believe this preliminary model is illuminative

in general for firms facing the choice between a fixed price channel and a stochastic

spot channel. In the actual iron ore industry, however, the spot price is usually the

balanced outcome of the demand and supply dynamics in the market. For instance,

Figure 4.4 below demonstrates the volume traded and the average spot price on

China’s iron ore spot market from 2001 to 2008; we can see a clear positive correlation

between the quantity and the price. Hence, a supplier such as Rio Tinto usually has

significant market power and its quantity decision is likely to affect the determination

of the spot price. On one hand, if the supplier limits the quantity allocated to

the contract channel, then the unsatisfied contract demand may switch to the spot

market, driving up the spot price. On the other hand, if the supplier ships too much

capacity to the spot market, then an increased supply level may instead drag down

the equilibrium spot price. Therefore, the tradeoff has to be carefully decided upon on

the basis of rigorous analytical modeling, which is indeed the focus of this section. We

want to point out that the supplier’s individual allocation behavior does not violate

US antitrust law (Wolak 2001), nor does it conflict with any existing international

regulation on the iron ore industry.

4.5.1 Endogenous Demand Curve and

Exogenous Supply Curve

We first analyze a simple one-period setting in which the supplier’s contract channel

allocation decision affects the spot demand curve, but not the spot supply curve. At

the beginning of the period, the supplier decides the maximum quantity Λ that he

would allocate to the contract channel. When demand D is realized, it will first be

satisfied through the contract channel (min(D, Λ)); the leftover demand (D − Λ)+,
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Figure 4.4: China Import Iron Ore Volume-Price Relationship

if any, will then shift to the spot market, and θ percent of that spot demand will

be captured by the supplier again. The parameter θ here denotes the supplier’s

penetration power: if we assume the transaction is done unit by unit in the spot

market, then with probability θ each unit demand will be satisfied by our supplier

(see Wu et al. 2002 for a similar treatment). For this part only, we ignore the

supplier’s capacity limit, and assume there is sufficient leftover capacity to cover the

switched-over demand θ(D − Λ)+. Under these assumptions, the equilibrium spot

price ps is determined by the following equation:

ps = a + b(D − Λ)+ + �, (4.5.1)

where a, b > 0 are constant coefficients, and � represents some random noise. This

formula reflects the fact that the equilibrium price is positively affected by the spot

demand, given a fixed supply curve. Besides, it is also subject to some external

randomness, which may potentially come from the supply side.

We justify Equation (4.5.1) using Figure 4.5. Note that the aggregate industry-

wise demand d is a step function of the spot price ps: d = (D−Λ)+ if ps is smaller than

the end market price pm, which is assumed to be constant; and d = 0 otherwise. We

assume that there is a given market supply curve ps = f(S) where f(·) is increasing;
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then, as the aggregated demand d increases, the equilibrium spot price ps moves up

along the supply curve. Therefore, if we assume a linear supply curve and pm is large

enough, then the equilibrium price ps can be expressed by Equation (4.5.1). Note

that we are modeling a situation where the spot demand is very price-inelastic. This

reflects the practice that iron ore contributes about only 10% of the total cost of

steel-making for large steel manufacturers (Jones 1986).
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Figure 4.5: Determining of the Equilibrium Spot Price

Under the above setup, the supplier’s optimization problem with a strategic allo-

cation decision Λ is denoted as

πS = max
Λ≥0

ΠS(Λ), (4.5.2)

where the objective function is

ΠS(Λ) = ED,�[(w − c) min(D, Λ) + θ(ps − c)(D − Λ)+], (4.5.3)

and the spot price ps is given by Equation (4.5.1). Below, we first analyze some

structural properties of ΠS(Λ) assuming D and � are independent. Then, based on

the structural results, we provide some policy recommendations to the supplier.

Assumption 4.5.1. The demand distribution has a bounded support on [m, M ],

where 0 < m < M ; and it also has an increasing failure rate (IFR), that is r(x) =
φ(x)

1−Φ(x)
is increasing.
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It is well known that distributions such as the uniform, Erlang, normal, and trun-

cated normal are all IFR (Porteus 2002). Hence this assumption will not significantly

affect the applicability of our model.

Lemma 4.5.2. IFR implies that r(x) = φ(x)

1−Φ(x)
≤ 1−Φ(x)R

M

x
(1−Φ(z))dz

.

Proposition 4.5.3. The supplier’s objective function ΠS(Λ) is quasiconvex in Λ on

interval [0,∞].

Proposition 4.5.4. Define Ξ = (θa+ θ̄c−w)µd + θb(µ2

d
+σ2

d
), the supplier’s optimal

allocation policy is of an extreme type:

If Ξ ≥ 0, then Λ∗ = 0 and it is optimal to sell only through the spot channel;

If Ξ < 0, then Λ∗ = ∞ and it is optimal to sell only through the contract channel.

Proposition 4.5.4 says that the uncapacitated supplier facing an aggregated in-

dustry demand should either push all demand to the spot market by allocating no

capacity to the contract channel or try to meet all demand through the contract

channel, depending on the demand distribution (µd, σd), the fixed contract price (w),

the supplier’s penetration power in the spot market (θ), as well as the equilibrium

spot price parameters (a, b). Despite risk, political, or reputational concerns, it is

not optimal for an uncapacitated supplier with market power to mix sales between

the contract channel and the spot channel, as long as his allocation decision does not

impact the supply curve in the spot market.

Corollary 4.5.5. Assuming a ≥ c, the advantage of total withholding (represented

by Ξ) is increasing in a, b, c, θ, σd, and decreasing in w.4

One interesting observation is that Ξ is also increasing in σd, which means the

larger the demand uncertainty is, the relatively more attractive total-spot policy

(i.e., Λ = 0) becomes to the supplier. This echos our previous numerical observation

for the open spot market case.

Game Theory Model with Multiple Buyers

In the previous part, we replaced the buyers’ ordering decision with an aggregated

industry-wise demand and established an optimal extreme policy for the supplier. As

4a ≥ c implies the expected default spot price is higher than the supplier’s unit cost.
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a natural extension, we complicate our scenario here to some extent and look at a

game theoretic setup in which the supplier makes an allocation decision, and multiple

buyers determine their own contract quantities, if any. As demonstrated by Figure

4.6, the sequence of events within the period is as follows:
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Figure 4.6: Sequence of Events for Strategic Withholding with Multiple Buyers

1. The supplier announces the contract quantity limit (allocation decision) Λi for

buyer i, i = 1, 2, · · · , N .

2. Each buyer i orders quantity qi(≤ Λi) through the contract channel.

3. End market demand Di realizes for each buyer i according to distribution Φi(·).
4. Buyer i orders the shortage quantity (Di− qi)+ from the spot market. The equili-

brium spot price ps is determined by the formula.

ps = a + b

N�

i=1

(Di − qi)
+ + �. (4.5.4)

5. Supplier sells θ
�

N

i=1
(Di − qi)+ through the spot market, where θ ∈ [0, 1] still

denotes the supplier’s market penetration power.

6. Buyer i satisfies the end market demand Di at unit market price pm.

Next, we analyze the model using backward induction – we first investigate the

buyers’ problem, then the supplier’s.

The Buyers’ Problem

Buyer i has only one nontrivial decision to make: contract quantity qi under the

supplier’s withholding decision Λi. He chooses the optimal qi ∈ [0, Λi] to maximize
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his expected profit, that is

πBi(�Λ) = max
0≤qi≤Λi

ΠBi(qi, �q−i), (4.5.5)

where the objective function is

ΠBi(qi, �q−i) = ED̄,�

�
pmDi − wqi − (a + b

N�

j=1

(Dj − qj)
+ + �)(Di − qi)

+

�
. (4.5.6)

Given �q−i, let Mi be the maximum value that the demand Di can take; we then

have the following result:

Proposition 4.5.6. ΠBi(qi, �q−i) is concave in qi and submodular in (qi, qj) for all

j �= i. The unconstrained maximizer q̂i(�q−i) satisfies the equation

(a + b

�

j �=i

E(Dj − qj)
+)(1− Φi(q̂i)) + 2b

�
Mi

q̂i

(1− Φi(x))dx− w = 0. (4.5.7)

Applying Topkis’s Theorem by checking the sign of the cross-partials for different

parameters, we can also obtain the following comparative statics result.

Corollary 4.5.7. (Comparative Statics) q̂i is decreasing in w; increasing in a and b.

We discuss the case of homogeneous buyers, in which all the N buyers face i.i.d.

demand D. It is then reasonable to assume that the supplier offers the same Λ to all

buyers. For this particular scenario, each buyer’s contract policy can be characterized

as follows:

Proposition 4.5.8. When all the N buyers face i.i.d. demand and the same contract

limit Λ from the supplier, their optimal order quantity q∗ is identical and given by

q∗ = min(q̂, Λ), where q̂ solves the following equation:

(a + b(N − 1)E(D − q̂)+)(1− Φ(q̂)) + 2b

�
M

q̂

(1− Φ(x))dx− w = 0. (4.5.8)
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The Supplier’s Problem

Now, at the beginning of the period, anticipating each buyer’s optimal contract quan-

tity q∗
i
(Λi), the supplier chooses the optimal �Λ to maximize his expected profit, that

is

πS = max
�Λ≥0

ΠS(�Λ), (4.5.9)

where the objective function

ΠS(�Λ) = E �D,�

�
(w − c)

N�

i=1

q
∗
i
(Λi) + θ(a + b

N�

i=1

(Di − q
∗
i
(Λi))

+ + �− c)
N�

i=1

(Di − q
∗
i
(Λi))

+

�

Similarly, we investigate the case with homogeneous buyers. From the previous

discussion, we know that when all the buyers face i.i.d. demand, the supplier offers a

unique contract limit Λ, and each buyer’s optimal contract quantity is given by q∗ =

min(q̂, Λ). The supplier achieves identical expected profit by offering Λ ∈ [q̂,∞) (since

buyers would always contract q̂). Therefore, we only need to investigate Λ ∈ [0, q̂],

in which case each buyer contracts exactly Λ. Based on this analysis, the supplier is

actually solving the following simplified optimization:

π̂S = max
0≤Λ≤q̂

Π̂S(Λ), (4.5.10)

where the new objective function

Π̂S(Λ) = E �D,�
[(w − c)NΛ + θ(a + b

N�

i=1

(Di − Λ)+ + �− c)
N�

i=1

(Di − Λ)+], (4.5.11)

and all the Di’s are i.i.d.

Proposition 4.5.9. Assuming a ≥ c, Π̂S(Λ) is convex in Λ, which implies the original

ΠS(Λ) is quasiconvex on [0,∞).

Proposition 4.5.10. Let Ξ� = Nθ(Nbµ2

d
+ (a − c)µd + bσ2

d
) − Π̂S(q̂); the supplier’s

optimal allocation policy is of an extreme type:

If Ξ� ≥ 0, then Λ∗ = 0 and total-spot is the optimal strategy; there exists a
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Λ� ∈ [0, q̂] such that allocating with any Λ ∈ [0, Λ�] leads to a higher expected profit for

the supplier than choosing total-contract.

If Ξ� < 0, then Λ∗ = ∞ and total-contract is the optimal strategy.

Proposition 4.5.10 demonstrates that even with a complicated game theoretic

setting, a supplier facing an endogenous spot demand curve and an exogenous spot

supply curve would still follow a bang-bang allocation policy – either choose a total-

contract strategy or a total-spot strategy. However, in contrast to the aggregated-

demand case in which the supplier sells through only one channel, here as long as

there are buyers facing a realized demand larger than the quantity they previously

contracted, the supplier may still participate in the spot market even if he allocated

all the capacity to the contract channel first.

4.5.2 Endogenous Demand and Supply Curves

In Section 4.5.1, we established the optimality of an extreme policy for the supplier

assuming that the supplier’s allocation decision affects only the industry demand

curve in the spot market, not the supply curve. Under some circumstances, due to the

restriction of internal stockpiling space and the nonzero delivery leadtime, the supplier

may need to ship the quantity to the local spot market before the spot trading takes

place, which will effectively shift the spot supply curve as well. Hence, in this section

we relax the aforementioned limiting assumptions and tackle the most general yet

most complicated dual-channel commodity selling problem that a capacitated supplier

faces. Again, we investigate a single period problem with aggregated contract-channel

demand D, which is stochastic. The supplier with a capacity limit K makes two

sequential decisions at two stages within the period.

Stage One: The supplier allocates capacity Λ (≤ K) to the contract channel before

knowing the final demand. In practice, this could mean setting an upper-bound

for the total contract volume to be executed. As with the previous version of the

model, we assume that the contract channel has a higher priority to the downstream

industry than the spot channel; that is, the demand is first satisfied through the

forward contract, and then θ percent of the leftover demand (D − Λ)+ goes to the

spot market later on. Here the constant θ (≤ 1) suggests that a fixed portion (1− θ)

of the leftover demand would be absorbed at some place other than the spot market,
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and its value can be estimated from historical data. We also assume that the contract

channel quantity incurs a unit holding cost of h since it needs to be stockpiled and

ready before the orders arrive.

Stage Two: The supplier ships quantity ΛS (≤ K −min(D, Λ)) from his leftover

capacity to sell in the spot market once the contract channel demand D is realized.

Given that the supplier has decided on the two quantity decisions Λ and ΛS,

we now explain how the demand and supply curves in the spot market would be

determined (Figure 4.7).
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Figure 4.7: Determining of the Equilibrium Price

The Demand Curve Different from the setting described in Section 4.5.1, here

we assume that there is a default spot demand curve d0 : Q = γ−δps (γ, δ > 0) before

the leftover demand θ(D−Λ)+ from the contract channel arrives at the spot market.

We add this complexity to better reflect the industry practice that there are usually

some external spot buyers other than the large buyers from the contract channel.

As Graeme Stanway, chief iron ore consultant at Rio Tinto, put it, “The long-term

contract is more geared to the larger (steel) mills particularly Japanese, Korean, and

large Chinese players such as Bao Steel.· · ·The spot market is a mechanism that

allows a broader range of steel mills to access high quality iron ore (G. Stanway,

personal communication, November 24, 2010).”

Given d0, which is price sensitive, and the switched-over demand ∆d = θ(D−Λ)+

from large buyers, which is assumed to be price inelastic, the final demand curve in
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the spot market is given by

d : Q = γ + θ(D − Λ)+ − δps. (4.5.12)

The Supply Curve Similarly to the demand side, we assume that before our

supplier participates in the spot market, there is a default industry supply curve given

by S0 : Q = −α + βps (α, β > 0). After the amount ΛS is added to the market, the

supply curve will be shifted to the right by ΩΛS (Ω > 0) and become

S : Q = −α + ΩΛS + βps. (4.5.13)

The parameter Ω indirectly reflects the potential reaction from other spot suppli-

ers to our large supplier’s quantity decision. In particular, Ω ≤ 1 suggests that the

quantity provided by other suppliers will decrease, possibly due to resource competi-

tion. Instead, Ω > 1 implies that the large supplier’s participation in the spot market

may lead to a market-following effect among the small spot suppliers.

The Equilibrium Price Given the above discussion, the equilibrium spot price

ps can be determined by equating the demand d and the supply S. Specifically,

solving Equation (4.5.12) and (4.5.13) jointly, we obtain the following:

ps =
α + γ + θ(D − Λ)+ − ΩΛS

β + δ
. (4.5.14)

For the ease of notation, we let a = α+γ

β+δ
, b = θ

β+δ
, and g = Ω

β+δ
(a, b, g > 0); then,

the above formula can be further simplified to

ps = a + b(D − Λ)+ − gΛS. (4.5.15)

Note that the random term � in Formula 4.5.1 is now replaced by −gΛS, which

reflects the impact of the supplier’s quantity decision on the spot supply curve. One

underlying assumption here is that the large supplier has the lowest unit production

cost c (due to economies of scale) among all the spot suppliers, and that c is even

lower than the default spot price p0

s
. Hence, the supplier’s spot quantity ΛS is inelastic

in price and can be represented by a vertical line in the price-quantity quadrant.
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Similarly, the switched-over demand θ(D−Λ)+ from the large contract buyers is also

inelastic to the spot price and can be depicted by a vertical line. This assumption

explains the parallel shift of the default spot demand and supply curves.

In the following section, we analyze the supplier’s decision-making process using

the standard method of backward induction.

Stage 2: The Determination of ΛS

Given the capacity limit K, the first stage allocation decision Λ, and the actual

realized industry-wise demand D, the supplier chooses a spot quantity ΛS to maximize

his second stage expected profit:

π
2

S
(Λ, D) = max

0≤ΛS≤K−min(D,Λ)

Π2

S
(Λ, D, ΛS), (4.5.16)

where the objective function is given by

Π2

S
(Λ, D, ΛS) = (ps − c)ΛS = [a + b(D − Λ)+ − gΛS − c]ΛS. (4.5.17)

Proposition 4.5.11. Π2

S
(Λ, D, ΛS) is concave in ΛS with the global maximizer Λ̂S

and the global maximum π̂2

S
given by Λ̂S = 1

2g
(a+ b(D−Λ)+−c), π̂2

S
= 1

4g
(a+ b(D−

Λ)+ − c)2.

Proposition 4.5.12. Assuming 0 ≤ a−c

2g
≤ K, based on the value of Λ and D, and

that 0 ≤ ΛS ≤ K −min(D, Λ), the supplier’s optimal decision of the Stage 2 problem

is characterized by Table 4.2.

Proposition 4.5.11 and 4.5.12 establish that the supplier’s second stage problem

is well behaved, and that the optimal spot participation quantity Λ∗
S

is determined

according to a modified-base-stock type of policy. Intuitively, we can see that the

unconstrained optimal spot quantity Λ̂S is increasing in D, a, and b, and decreasing

in Λ, c, and g.

Stage 1: The Determination of Λ

At Stage 1, with the full contingent plan for the second stage based on the analysis

in Section 4.5.2, the supplier chooses Λ ∈ [0, K] to maximize his expected profit over
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Table 4.2: Optimal Solution of the Stage Two Problem

Case Range of Λ Range of D Optimal Decision Λ∗S
(i)

[0, K − a−c
2g ]

(0,Λ] 1
2g (a− c)

(ii) (Λ, 1
b (2gK − (2g − b)Λ− (a− c))] 1

2g (a + b(D − Λ)− c)

(iii) ( 1
b (2gK − (2g − b)Λ− (a− c)), M) K − Λ

(iv)

(K − a−c
2g , K]

(0, K − a−c
2g ] 1

2g (a− c)

(v) (K − a−c
2g , Λ] K −D

(vi) (Λ, M) K − Λ

the entire period:

π
1

S
= max

0≤Λ≤K

Π1

S
(Λ), (4.5.18)

where the objective function is given by

Π1

S
(Λ) = ED {(w − c) min(D, Λ) + π

2

S
(Λ, D)} (4.5.19)

= ED {(w − c) min(D, Λ) + Π2

S
(Λ, D, Λ∗

S
(Λ, D))},

and Λ∗
S

is described in Proposition 4.5.12. Depending on the specific range of Λ and

D, we can further expand the optimization problem as follows:

π
1

S
= max{ max

0≤Λ≤K−a−c

2g

Π1

S,1
(Λ), max

K−a−c

2g
<Λ≤K

Π1

S,2
(Λ)}, (4.5.20)

where

Π1

S,1
(Λ) = ED (w − c) min(D, Λ)− hΛ

+

�
Λ

0

(a− c)2

4g
φ(x)dx +

� 1
b
(2gK−(2g−b)Λ−(a−c))

Λ

(a + b(x− Λ)− c)2

4g
φ(x)dx

+

�
M

1
b
(2gK−(2g−b)Λ−(a−c))

(K − Λ)[a + b(x− Λ)− g(K − Λ)− c]φ(x)dx,

(4.5.21)
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Π1

S,2
(Λ) = ED (w − c) min(D, Λ)− hΛ

+

�
K−a−c

2g

0

(a− c)2

4g
φ(x)dx +

�
Λ

K−a−c

2g

(K − x)[a− g(K − x)− c]φ(x)dx

+

�
M

Λ

(K − Λ)[a + b(x− Λ)− g(K − Λ)− c]φ(x)dx. (4.5.22)

Proposition 4.5.13. Assuming b ≤ g and a ≤ w, there exist mild conditions on

the demand distribution5 such that the supplier’s expected profit function Π1

S
(Λ) is

convex-concave in Λ on interval [0, K] with at most one interior maximizer Λ̂, which

would be the unique solution to either Π1

S,1
(Λ)� = 0, (Λ ∈ [0, K − a−c

2g
]) or Π1

S,2
(Λ)� =

0, (Λ ∈ (K − a−c

2g
, K]).

Proposition 4.5.13 establishes a very important structural property of the sup-

plier’s first stage profit function. Under convex-concavity, we need to compare at

most three allocation decisions: the two extreme values Λ = 0 and Λ = K, as well as

the interior local maximizer Λ̂ (if it exists). Whichever leads to the highest expected

profit should be chosen as the optimal allocation decision. This strategy is expressed

formally in the following corollary:

Corollary 4.5.14. The supplier’s optimal first stage allocation decision Λ∗ is char-

acterized by

Λ∗ =






Λ̂, if Λ̂ exists and Π1

S
(Λ̂) ≥ Π1

S
(0)

0, if Π1

S
(0) > Π1

S
(Λ̂) and Π1

S
(0) ≥ Π1

S
(K)

K, if Λ̂ does not exist and Π1

S
(K) > Π1

S
(0)

(4.5.23)

where

Π1

S
(0) =

� (2gK−(a−c))
b

0

(a + bx− c)2

4g
φ(x)dx +

�
M

(2gK−(a−c))
b

K(a + bx− gK − c)φ(x)dx,

(4.5.24)

Π1

S
(K) = (w − c)[

�
K

0

xφ(x)dx + K(1− Φ(K))]− hK +
(a− c)2

4g
Φ(K − a− c

2g
)

5Refer to Assumption B.0.3 in the proof.
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+

�
K

K−a−c

2g

(K − x)[a− g(K − x)− c]φ(x)dx. (4.5.25)

A further inspection of the validity of Proposition 4.5.13 (proof available in ap-

pendix) reveals that the concavity part of the result relies heavily on the condition

that b ≤ g, i.e., θ ≤ Ω. In other words, if the shifting effect of the supplier’s sec-

ond stage quantity decision ΛS on the default spot supply curve is stronger than

the shifting effect of the unfulfilled first stage demand (D − Λ)+ on the default spot

demand curve, then it is likely that the second half of the expected profit function

is concave and that it is optimal for the supplier to balance the sales between the

contract channel and the spot channel, i.e., Λ∗ ∈ (0, K). If b > g (θ > Ω), however,

it is more likely that the supplier would face a convex profit function, in which case

an extreme policy similar to the one in the previous section would be optimal. In

the actual iron ore industry, since buyers usually have alternatives of sourcing from

medium-size ore suppliers in India or Africa as well, θ is certainly less than 1, and

thus we expect θ ≤ Ω to hold.

Proposition 4.5.15. (Comparative Statics) The potential interior maximizer Λ̂ and

the three function values, Π1

S
(Λ̂), Π1

S
(0), and Π1

S
(K), observe the monotonicity prop-

erty described in Table 4.3:

Table 4.3: Comparative Statics (↑: increasing, ↓: decreasing, –: irrelevant)

Parameters Λ̂ Π1

S
(Λ̂) Π1

S
(0) Π1

S
(K)

a (i.e., α,γ) ↓ ↑ ↑ –
b (i.e., θ) ↓ ↑ ↑ –
g (i.e., Ω) ↑ ↓ ↓ –

w ↑ ↑ – ↑
c ↓ ↓ ↓ ↓
h ↓ ↓ – ↓

The monotonicity with respect to µd, σd, β and δ (demand/supply curve price

elasticity coefficients) is not analytically definable and will be discussed through nu-

merical analysis in Section 4.5.4.
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4.5.3 Special Cases

In the previous section, we formulated the supplier’s capacity allocation problem for

the most general case, where the contract channel demand D is a continuous random

variable with a given distribution. We also derived some analytical results showing

the structure of the supplier’s optimal policy. However, due to the complexity of the

general model, we were not able to demonstrate the strategy in a closed-form manner.

In this section, we concentrate on two special cases, in which the aggregate contract

demand D is either deterministic or two-point distributed. This allows us to discuss

the corresponding optimal policies and managerial insights in a more specific and

illustrative way.

Deterministic Demand

We first investigate the simplest scenario in which D is deterministic and therefore

the entire system contains no randomness. To reduce the number of unnecessary

contingencies, we assume D ≤ K; the previous condition that a−c

2g
≤ K also applies.

Obviously, the first stage contract allocation quantity Λ will not exceed D. The fol-

lowing proposition delineates the detailed contingency map for the optimal decisions

in the two stages. We can see that even under this deterministic case, the first stage

allocation quantity may not be extreme.

Proposition 4.5.16. Define Λ̂ = 1

2(g−b)
[w − a − bD − h + (2g − b)K], we have

2gK−(a+bD−c)

2g−b
≤ Λ̂ ≤ D and the supplier’s optimal allocation policy under a determin-

istic demand D is given by:

If D ≤ min(4g(w−c−h)−2b(a−c)

b2
, K − a−c

2g
), then Λ∗ = D, Λ∗

S
= a−c

2g
;

If 4g(w−c−h)−2b(a−c)

b2
< D ≤ K − a−c

2g
, then Λ∗ = 0, Λ∗

S
= a+bD−c

2g
;

If max(K − a−c

2g
, K − a+h−w

2g−b
) ≤ D ≤ K − a−c

b
+ (2g−b)(w−c−h)

b2
, we have:

If (w − c− h)Λ̂ + (a + b(D − Λ̂)− g(K − Λ̂)− c)(K − Λ̂) ≥ (a+bD−c)2

4g
, then

Λ∗ = Λ̂, Λ∗
S

= K − Λ̂;

If else, then Λ∗ = 0, Λ∗
S

= a+bD−c

2g
;

Otherwise, we have:

If (w−c−h)D+(a−g(K−D)−c)(K−D) ≥ (a+bD−c)2

4g
, then Λ∗ = D, Λ∗

S
= K−D;

If else, then Λ∗ = 0, Λ∗
S

= a+bD−c

2g
.
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We can see from the third scenario above that even when the contract demand is

deterministic, the supplier’s first stage allocation decision may not be totally extreme:

there are circumstances under which the supplier should satisfy only part of the

demand in the contract channel and save the rest of the capacity for the spot market.

Hence, when the equilibrium spot price is completely endogenous, demand uncertainty

is not the only reason for the supplier to adopt a dual-channel strategy, though the

uncertainty may have an impact on the specific allocation quantities (will be shown

in numerical analysis).

Two-Point Demand

We next discuss another commonly adopted setting in which the demand is two-point

distributed, representing both an optimistic scenario and a pessimistic scenario. In

particular, we assume that D = DH with probability p, and that D = DL with

probability p̄ = 1 − p, where 0 < DL ≤ K − a−c

2g
< DH ≤ K and 0 < p < 1. In

this stochastic case, the supplier’s second stage allocation decision ΛS is still given by

Proposition 4.5.12. We know with certainty that the supplier’s first stage decision Λ ∈
[0, DH ]; however, since Assumption B.0.3 (see appendix) that supports Proposition

4.5.13 in the previous section is no longer valid here, the structure of the optimal

policy will consequently be different. More explicitly, the supplier’s optimal allocation

strategy is given by Proposition 4.5.17 below:

Proposition 4.5.17. Assume b ≤ g, let γ1 = 2gK−(a−c)−bDH

2g−b
, γ2 = 2gK−(a−c)−bDL

2g−b
,

Λ̂1 = p(w−a−bDH+(2g−b)K)−h

2p(g−b)
, Λ̂2 = 2g[(w−c−h)−p(a+bDH−c−(2g−b)K)]−p̄b(a+bDL−c)

4pg(g−b)−p̄b2
, and µd =

pDH + p̄DL, then γ1 < DH , γ2 ≥ DL, γ1 < K − a−c

2g
≤ γ2, and the supplier’s first

stage allocation decision Λ is given by:

(i) When γ1 ≤ DL, if p ∈ [0, ( b

2g−b
)2], then Π1

S
(Λ) is convex on [0, DL] and concave

on [DL, DH ]:

if Λ̂1 ∈ [DL, DH ], then Λ∗ = Λ̂1 if Π1

S
(Λ̂1) ≥ Π1

S
(0), and Λ∗ = 0 otherwise;

if Λ̂1 /∈ [DL, DH ], then Λ∗ = 0, DL, or DH , whichever leads to the highest profit.

If p ∈ (( b

2g−b
)2, 1], then Π1

S
(Λ) is convex on [0, γ1], concave on [γ1, DL] and [DL, DH ]:

if Λ̂1 ∈ [DL, DH ], then Λ∗ = Λ̂1 if Π1

S
(Λ̂1) ≥ Π1

S
(0), and Λ∗ = 0 otherwise;

if Λ̂2 ∈ [γ1, DL], then Λ∗ = Λ̂2 if Π1

S
(Λ̂2) ≥ Π1

S
(0), and Λ∗ = 0 otherwise;

else, Λ∗ = 0, DL, or DH , whichever leads to the highest profit. Π1

S
(Λ) is given by
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Equation (B.0.43) in the appendix.

(ii) When γ1 > DL, Π1

S
(Λ) is convex on [0, DL], [DL, γ1], and concave on [γ1, DH ]:

if Λ̂1 ∈ [γ1, DH ], then Λ∗ = Λ̂1, 0, or DL, whichever leads to the highest profit;

if Λ̂1 /∈ [γ1, DH ], then Λ∗ = 0, DL, or DH , whichever leads to the highest profit.

Π1

S
(Λ) is given by Equation (B.0.44) in the appendix.

Different from the case where the contract channel demand is continuously dis-

tributed and only one interior local maximum may exist, here the lower demand value

DL can be another local maximal point that the supplier should evaluate.

4.5.4 Numerical Analysis

In the previous section we provided an analytical discussion of the commodity sup-

plier’s capacity allocation strategy during the two decision stages. We also provided

some comparative statics results in terms of how the optimal allocation quantity

should respond to the change of several parameter values. In this part, we will gen-

erate additional managerial insights by conducting a thorough numerical analysis.

We focus on the most comprehensive case where the supplier’s quantity decision can

affect both the spot demand curve and the spot supply curve, which consequently

determine the equilibrium spot price.

Table 4.4: Benchmark Values of Model Parameters (units: K, α, γ, µd, σd: million
ton; w, c, h: dollar per ton; β, δ: million ton per dollar; θ, Ω: no unit)

parameter value parameter value parameter value
K 300 w 150 c 80
h 6 α 20 β 3
γ 1180 δ 5 Ω 1
θ 0.8 µd 250 σd 100

Table 4.4 above shows the benchmark parameter values, which are partially based

on industry practice and partially based on reasonable estimates. Figure 4.8(a) plots

the supplier’s expected profit versus his first stage allocation decision Λ, and we

can see it is optimal for the supplier to allocate Λ∗ = 205.7 million tons to the
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contract channel in the first stage before seeing the demand. Figure 4.8(b) then

demonstrates the optimal quantity to be shipped to the spot market during the second

stage contingent upon the realized contract channel demand D.
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Figure 4.8: The Supplier’s Optimal Allocation Decisions for the Benchmark Case

Next, we investigate the sensitivity of the supplier’s first stage allocation decision,

as well as his total expected profit with respect to several key model parameters.

The Impact of θ and Ω

Figure 4.9 shows the impact of the demand switch ratio θ and the spot supply emu-

lation factor Ω on the supplier’s expected profit and his optimal first stage allocation

decision. Let us refer to the policy of allocating all capacity to the contract channel

in the first stage (i.e., Λ = K) as the total-contract policy, and the one of reserving

all capacity for the spot market (i.e., Λ = 0) as the total-spot policy. Panels (a) and

(b) provide a 3-D overview of the results. Panels (c) and (d) demonstrate that: The

optimal expected profit is increasing in θ and decreasing in Ω. The profit gap between

the optimal allocation strategy (with a mixed portfolio) and the total-contract strat-

egy is increasing in θ and decreasing in Ω, with average profit improvements of 3.94%

and 7.23%, respectively. The profit gap between the optimal allocation strategy and

the total-spot strategy is decreasing in θ and increasing in Ω, with average profit

improvements of 7.95% and 13.27%, respectively. Finally, Panel (e) shows that the

optimal contract channel allocation quantity Λ∗ is decreasing in θ and increasing in

Ω, which is consistent with the result in Proposition 4.5.15.
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Figure 4.9: Impact of θ and Ω on Expected Profit and Optimal Allocation Decision

The Impact of w and c

Figure 4.11 shows the impact of the contract channel price w and the unit production

cost c on the supplier’s expected profit and his optimal first stage allocation decision.

Panels (a) and (b) provide a 3-D overview. Panels (c) and (d) demonstrate that: The

expected total profit is increasing in w and decreasing in c, which is quite intuitive.

The profit gap between the optimal allocation strategy and the total-contract strategy

is decreasing in w and constant in c, with average profit improvements of 4.71%

and 3.88%, respectively. The profit gap between the optimal allocation strategy

and the total-spot strategy is increasing in w and constant in c, with average profit
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Figure 4.10: Impact of w and c on Expected Profit and Optimal Allocation Decision

improvements of 8.73% and 8.09%, respectively. Panel (e) further shows that the

optimal contract allocation quantity Λ∗ is increasing in w and independent of c.

The Impact of α (γ) and β (δ)

From the equilibrium spot price Equation 4.5.14, we can see that α and γ play

equivalent roles in the system, as do the quantity-price sensitivity coefficients β and

δ. Hence we only select one parameter from each pair, α and β in particular, to

investigate their impacts on the expected profit as well as the optimal allocation

decision. Panels (a) and (b) in Figure 4.11 summarize the results in a 3-D form.

Panels (c) and (d) demonstrate that: The optimal expected profit is increasing in
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Figure 4.11: Impact of α (γ) and β (δ) on Expected Profit and Optimal Allocation
Decision

α and decreasing in β. The profit gap between the optimal allocation strategy and

the total-contract strategy is increasing in α and decreasing in β, with average profit

improvements of 3.84% and 3.88%, respectively. The profit gap between the optimal

allocation strategy and the total-spot strategy is decreasing in α and increasing in

β, with average profit improvements of 8.09% and 23.06%, respectively. Panel (e)

further shows that the optimal contract allocation quantity Λ∗ is decreasing in α and

increasing in β. This is to say the supplier should rely more on the spot channel if

the innate supply level (−α) in the spot market is low or the innate demand level (γ)

is high, or if the demand and supply curves have low price elasticities (β, δ).
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Figure 4.12: Impact of µd and σd on Expected Profit and Optimal Allocation Decision

The Impact of µd and σd

Finally, Figure 4.12 shows the impact of the mean demand µd and the standard

deviation σd on the supplier’s expected profit and his optimal first stage allocation

decision. Panels (a) and (b) provide a 3-D overview. Panels (c) and (d) demonstrate

that: The optimal expected profit is increasing in µd and decreasing in σd. The

profit gap between the optimal allocation strategy and the total-contract strategy is

increasing in both µd and σd, with average profit improvements of 4.07% and 4.03%,

respectively. The profit gap between the optimal allocation strategy and the total-

spot strategy is decreasing in both µd and σd, with average profit improvements of

7.98% and 8.05%, respectively. Panel (e) further shows that the optimal contract
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allocation quantity Λ∗ is decreasing in σ, and potentially unimodal in µd. However,

when the demand variability is high, the supplier should allocate more capacity to

the spot market in the first stage as µd increases.

4.6. Conclusion

In this chapter, we looked at a commodity trading problem in which a commodity

supplier such as Rio Tinto tries to decide the optimal allocation of his production

capacity between a fixed-price contract channel and a spot market channel in order

to maximize his total sales profit from the two. We discussed two different model

settings in which the spot market is either open, i.e., the spot price is exogenous given

by a random distribution, or closed, i.e., the spot price is endogenously determined

by the supplier’s quantity decision. We identified the supplier’s optimal allocation

policy under both circumstances and demonstrated how the optimal decision changes

with respect to the key model parameters. We further quantified the average profit

improvement of adopting a mixed-channel strategy versus using a single contract

channel or a single spot channel through numerical analysis.

For the open spot market scenario, we found that the demand-price correlation and

a risk-averse attitude are two reasons for the supplier to adopt a dual-channel strategy.

In particular, the supplier should allocate more quantity to the spot channel if the

contract channel demand and the spot price are more positively correlated, and he

should allocate more to the contract channel if he is more risk-averse. Additionally, we

ascertain that the optimal quantity allocated to the spot market should also increase

in the average spot price, the demand variability, or the spot price variability. It

should decrease in the average contract channel demand.

For the closed spot market case, we believe that we are the first to explicitly

model the phenomenon in which the commodity supplier’s single quantity decision

affects both the demand curve and the supply curve in the spot market and further

determines the equilibrium spot price. In addition to the detailed analysis in the main

sections, we can extract the following managerial insights, which are instructive to a

large commodity supplier such as Rio Tinto: First, the stronger the large supplier’s

market-leading impact or the weaker the resource competition between the large and
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the small suppliers (denoted by an increasing Ω), the less profit the supplier can

obtain from the spot market. Accordingly, the supplier should rely more on the

contract channel in the first stage. Second, the more market options the buyers have

during the second stage (denoted by a decreasing θ), the less navigating power (in

terms of shifting the demand curve) the supplier owns in the spot market; and thus the

supplier should rely more on the contract channel in the first stage as well. Third,

if the variability of the contract channel demand is high, then the supplier should

reserve more capacity for the spot market in the first stage as the average contract

demand increases, with the hope of driving more demand to the spot channel and

creating a potentially high spot price.

In sum, we believe that multi-channel commodity trading is a very important

practice in the modern global economy and many opportunities for economic and

operational investigation of this topic still exist. We want to point out that although

this research is motivated by the business practice in the iron ore industry, the model-

ing methodology and managerial insights are certainly applicable to other industries

with similar channel choices to make.
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Conclusions

5.1. Major Results and Contributions

In this dissertation, we investigated how firms can utilize dual-channel sourcing and

selling strategies to reduce their capacity procurement inefficiency and maximize their

total sales income when faced with an increasingly uncertain business environment.

We provide a detailed recap of the main discussions below.

In Chapter 2, we studied from a theoretical perspective a dynamic dual-source ca-

pacity expansion problem with backorders and demand forecast updates, in which a

capital-intensive firm procures production capacity from both a flexible (fast) source

and a base (slow) source. Assuming that the forecast updates follow an additive

MMFE process and that the two capacity sources have consecutive zero-one lead-

times, we formulated a dynamic programming recursion with two state variables: the

capacity position (on-hand plus on-order) and the modified backorder level (actual

backorder plus initial market information), and two decision variables: the expand-to

capacity positions after ordering from the flexible source and the base source, re-

spectively. We demonstrated joint concavity for the objective function and showed

that the base orders follow a state-dependent base-stock policy. However, an optimal

base-stock policy does not exist for the flexible source, and the flexible orders only fol-

low a partial-base-stock policy. We further established some monotonicity properties

for the (partial) base-stock levels, and quantified the value of having dual capacity

sources and demand forecast updates using numerical analysis. We also investigated a

98
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brief extension of the model in which inventory and capacity decisions must be made

jointly. We identified that once the capacity decisions are made, the production level

can be determined according to a modified-base-stock policy, and that during each

period it is optimal to order capacity from the flexible source only if all capacity after

expansion would be used to produce inventory.

Our work in Chapter 2 complemented the extant OM literature on firms’ multi-

channel procurement strategies. The results showed that the dual-source capacity

expansion problem with demand backlogging is categorically different from and more

complicated than both its inventory counterpart and the dual-source capacity expan-

sion problem with lost sales. Therefore, we called for heuristic solutions that firms can

easily implement in practice to procure production or service capacity from multiple

sources, the leadtimes of which are likely to be nonconsecutive.

Chapter 3 is thus a direct response to this call. In this chapter, we constructed a

dual-mode equipment procurement heuristic (DMEP) to help Intel, the leading semi-

conductor manufacturer, improve its capital equipment procurement practice. DMEP

enables the firm to dynamically order production capacity from two complementary

service modes of an equipment supplier following a forecast revision process, during

which the firm constantly adjusts its forecast for both the mean and the variance

associated with future periods’ demand. The entire DMEP heuristic consists of three

layers. At the execution layer, we developed a rolling-horizon algorithm which allows

the firm to solve a stochastic program during each period to determine the current-

period order quantities through both supply modes, taking into consideration the

revised demand information and subject to a reservation quantity constraint. At

the reservation layer, before the planning horizon starts, the heuristic enumerates a

large number of possible evolution paths of the initial forecasting profile, and deter-

mines the optimal reservation levels with both supply modes using a sample average

approximation method. At the contract negotiation layer, the heuristic adopts an

efficient-frontier approach and produces iso-profit curves in a leadtime-price quad-

rant based on sensitivity analyses. When the firm is about to negotiate the (leaditme,

price) terms for both service modes with the equipment supplier, he can then conve-

niently compare different contract terms with the help of these iso-profit curves. We

then demonstrated through actual numerical examples how DMEP can be used as an
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effective decision-support tool at Intel to manage the capital procurement process.

We observed that the flexible mode is used under either a mean forecast shock or a

demand realization shock; the firm tends to rely more on the flexible mode when the

demand forecast uncertainty or the service level target is higher, or when the firm is

more risk-averse.

The DMEP heuristic we constructed in this chapter is a fairly efficient tool that

firms in capital-intensive industries can adopt to reduce their equipment procurement

costs while still maintaining high service levels. To the best of our knowledge, we are

the first to provide such a holistic solution to cover the operational, tactical, and

strategic capacity decision problems. Furthermore, with slight changes of the state

transition equations, DMEP can be easily adapted to address multi-source inventory

control problems as well.

In Chapter 4, we switched our attention from reducing costs to boosting revenues.

We looked at a commodity trading problem and investigated how a commodity sup-

plier can strategically allocate his production capacity between a fixed-price contract

channel and an uncertain spot channel, with the purpose of maximizing the total sales

revenue from the two. We first looked at a scenario in which the spot market is open

and the spot price is given by a random distribution. We showed that if the contract

channel demand is certainly higher than the supplier’s capacity, then the supplier

may adopt a dual-channel allocation policy only if he is risk-averse and the average

spot price is moderately higher than the fixed contract price. If the contract chan-

nel demand can be lower than the supplier’s capacity and follows a bivariate normal

distribution together with the spot price, then the supplier is better off adopting a

dual-channel allocation strategy even when he is risk-neutral, as long as the contract

demand and the spot price are positively correlated. We then looked at a case where

the spot market is closed and the spot price is jointly determined by the demand

and supply curves in the market, both of which can be affected by the supplier’s

allocation decision. We demonstrated that the supplier should adopt a single-channel

strategy (either total-contract or total-spot) if the spot demand curve is endogenous

while the spot supply curve is exogenous. If both curves are endogenously affected

by the supplier’s allocation decision, however, the supplier’s expected profit function
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is convex-concave and a dual-channel strategy can be optimal, as long as the shift-

ing effect of the supplier’s spot allocation quantity on the default spot supply curve

is stronger than shifting effect of the switched-over contract demand on the default

spot demand curve. We also discussed how the optimal allocation quantity would

change with respect to key model parameters and studied two special cases where

the contract channel demand is either deterministic or two-point distributed. We

further carried out a comprehensive numerical analysis to quantify the value of using

dual-channels and the sensitivity of the optimal decisions.

Global commodity trading occurs at higher frequencies and larger scales as the

economic activities of different countries become more interconnected. The capacity

allocation model we constructed in this chapter is therefore instructive to help com-

modity suppliers take advantage of multiple sales channels to maximize their total

income through the trading process. Decision-makers can use our model to deter-

mine the effect of key production and market parameters on the optimal allocation

quantities to the fixed-price channel and the spot channel, respectively. The model-

ing methodology and managerial insights are also applicable to other industries with

similar channel choices to make.

5.2. Directions for Future Extensions

For the dual-mode equipment procurement problem studied in Chapter 3, we ignored

the impact of inventory carry-over on firms’ capacity decisions. However, we would

like to note that the execution-level algorithm can be modified to include the option

of holding inventory easily. One must define a decision variable for inventory for each

period and parameters for inventory holding cost and salvage value. As a result,

the execution-level problem would be slightly more complicated since, in addition

to the base and flexible capacity execution levels, the optimization would also need

to calculate the optimal inventory levels as well. Our preliminary numerical studies

show that, when holding inventory is an option, the firm tends to carry inventory and

(1) build up capacity earlier, (2) order less capacity, and (3) decrease the percentage

of flexible capacity reserved and exercised. It would be worthwhile to provide some

theoretical justifications to these findings.
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For the strategic capacity allocation problem investigated in Chapter 4, one could

internalize the forward contract price negotiation between the supplier and the buy-

ers using either a Stackelberg game or a Nash bargaining process. Alternatively,

one could investigate a multi-period problem in which the current period’s contract

price is determined based on last period’s realized spot price. It would also be mean-

ingful to incorporate a detailed analysis for the buyer’s side, and discuss how the

commodity supplier’s capacity allocation strategy would affect the total supply chain

performance.

Furthermore, it could be interesting to combine the multi-channel sourcing prob-

lem with the multi-channel distribution problem, and study a setting in which the

firm has a wide range of leverage from both the supply side and the demand side

to adapt to the changing market conditions. We leave these opportunities of further

analysis to other researchers.
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Supplementary Discussion for

Chapters 2 and 3

A.1. The Case of Inventory Carry-Over

One assumption in Chapter 2’s discussion is that the firm’s production quantity dur-

ing each period cannot be carried-over to the next period, and thus the inventory

decision problem is eliminated from our consideration. This is indeed the situation

for many service agencies with customized products, such as call centers, or for firms

producing perishable goods. Some firms in the electronic industry also adopt a build-

to-order policy and strive to keep its inventory level as low as possible in order to

minimize the procurement cost. However, because of the production leadtime, many

other firms would prefer to build to stock, under which circumstance capacity and

inventory decisions need to be made jointly. In a related work, Angelus and Porteus

(2002) address the problem of simultaneous production and capacity management un-

der stochastic demand for produce-to-stock goods. They investigate a single-sourcing

case and establish a target interval policy for capacity planning: it is optimal to make

the smallest necessary change to bring the production capacity into a given target

interval. Below, we extend their model to a dual-sourcing case by adding an inventory

layer to our previous dual-source capacity expansion problem.

We investigate a case where both capacity and inventory are built to stock, i.e.,

need to be determined before all the demand randomness realizes. In the following

103
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DP recursion, the first state variable x still denotes the firm’s modified capacity

level (on-hand plus on-order); the second state variable y here represents the firm’s

inventory position, for which a positive value means inventory on hand and a negative

value implies backorders. To simplify notation, we eliminate µn and assume the final

market information ε2

n
has a mean of µn; and that ε2

n
> 0 holds almost surely.

Jn(x, y) = max
x≤x�≤x��;y≤z≤y+x�

E {pn[min(ε2

n
, z

+) + z
− − y

−]− cb(x
�� − x

�)− cf (x
� − x)

− chx
� − cz(z − y) + δJn+1(x

��
, z − ε

2

n
− ε

1

n+1
)} (A.1.1)

for n = 0, 1, · · · , N ; ε2

N+1
= 0 and JN+1(x, y) = cuy. Also notice that in the above

formula, z+ = max(z, 0) and z− = min(z, 0). More explicitly, Equation (A.1.1) can

be rewritten as

Jn(x, y) = max
x≤x�≤x��

�
vn(x, x

�
, x

��
, y)− γ(x, x

�
, x

��
, y)

�
, (A.1.2)

where γ(x, x�, x��, y) = cb(x�� − x�) + cf (x� − x) + chx
� − czy, and

vn(x, x
�
, x

��
, y) = max

y≤z≤y+x�






E {pn min(ε2

n
, z)− czz + Jn+1(x

��
, z − ε

2

n
− ε

1

n+1
)},

for y ≥ 0

E {pn(z − y)− czz + Jn+1(x
��
, z − ε

2

n
− ε

1

n+1
)},

for y < 0, x
�
< |y|

gn(x��, z, y), for y < 0, x
� ≥ |y|

(A.1.3)

gn(x��, z, y) =






E {pn(min(ε2

n
, z)− y)− czz + Jn+1(x

��
, z − ε

2

n
− ε

1

n+1
)},

for 0 ≤ z ≤ y + x
�

E {pn(z − y)− czz + Jn+1(x
��
, z − ε

2

n
− ε

1

n+1
)},

for y ≤ z < 0

(A.1.4)

In the following part, we investigate some analytical properties of the optimal

inventory and capacity policies. Note that the scope of our discussion is rather limited

due to the complexity of the model.
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Proposition A.1.1. Both Jn(x, y) and vn(x, x�, x��, y) are concave; the objective func-

tion of vn(x, x�, x��, y) is concave in the production decision z with an unconstrained

maximizer ẑ(x��); and the optimal inventory decision z∗ is captured by a modified

base-stock policy: build as close to ẑ(x��) as possible in the region [y, y + x�].

Proposition A.1.1 shows that once the capacity decisions are made, the inventory

decision would follow a well-behaved base-stock type of policy. To explicitly describe

the optimal base-stock level ẑ, however, one needs to rely on numerical methods.

Proposition A.1.2. Given cf > cb, at optimality we have x� > x only if z∗ = y + x�.

The above proposition says that when both capacity and inventory are built to

stock, the firm orders capacity from the flexible mode during a certain period only if

all capacity after expansion will be used to produce inventory. The converse is not

necessarily true though.

A.2. A High-Level Discussion on Risk Aversion

Here we explore some general analytical results associated with risk-averse decision-

making. The purpose of the subsequent general discussion is two-fold: 1. It gener-

ates additional theoretical contribution to the OM literature. 2. The entire DMEP

heuristic we construct is very complex and intertwined, and it would be a great com-

putational challenge to directly address all the modeling specifics in a theoretical

exploration; hence we hope that a high-level analytical discussion can at least pro-

vide some justification for our numerical observations in Section 3.4.3 with regard to

risk-averse decision-making.

The following proposition explains how a concave increasing utility function af-

fects an individual or a company’s optimal utility-maximizing decision in a stochastic

context, given different properties that the original objective function possesses.

Proposition A.2.1. Let ζ be a random variable. Assume that a continuous dif-

ferentiable function f(x, ζ) is concave in x, and that a continuous differentiable

function g(·) is concave and increasing. Let x∗ = arg maxx Eζf(x, ζ) and x̂∗ =

arg maxx Eζg(f(x, ζ)), we have:
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Table A.1: Change of Optimal Solution under Concave Increasing Utility Function

Case Sufficient conditions on f(x, ζ) in a neighborhood of x∗ Conclusion
(i) submodular in (x, ζ); increasing in ζ

x̂∗ ≥ x∗
(ii) supermodular in (x, ζ); decreasing in ζ

(iii) submodular in (x, ζ); decreasing in ζ
x̂∗ ≤ x∗

(iv) supermodular in (x, ζ); increasing in ζ

The additional properties we imposed on the original objective function f(x, ζ)

are only sufficient conditions. One may argue that the combination of modularity1

and monotonicity is too strong a condition, but it turns out that these conditions

only need to be satisfied in a small neighborhood of x∗ – the original maximizer of

Ef(x, ζ) before g(·) is applied. For the more general case where f(x, ζ) observes

modularity but not monotonicity, as illustrated by Figure A.1(a), similar conclusions

can be made if g(·) satisfies certain properties as described by Corollary A.2.2 below.

Corollary A.2.2. Assume ζ has a bounded support on [ζ, ζ̄], f(x, ζ) is continuous

differentiable and concave in x, f(x∗, ζ) is unimodal in ζ. Also assume that the

continuous differentiable function g(f) is concave increasing for f < ∆ and linear

increasing for f ≥ ∆, where ∆ = max(f(x∗, ζ), f(x∗, ζ̄)). Then we have:

Table A.2: Change of Optimal Solution under Concave Increasing Utility Function

Case Sufficient conditions on f(x, ζ) in a neighborhood of x∗ Conclusion
(v) submodular in (x, ζ); f(x∗, ζ) < f(x∗, ζ̄)

x̂∗ ≥ x∗
(vi) supermodular in (x, ζ); f(x∗, ζ) ≥ f(x∗, ζ̄)
(vii) submodular in (x, ζ); f(x∗, ζ) ≥ f(x∗, ζ̄)

x̂∗ ≤ x∗
(viii) supermodular in (x, ζ); f(x∗, ζ) < f(x∗, ζ̄)

In a real business context such as a profit-maximizing newsvendor setting, the

above segmented utility function g(·) is actually a reasonable one. It simply says that

1We use “modularity” as a general reference for both submodularity and supermodularity.
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(b) A particular type of function g

Figure A.1: The Case in Which f(x∗, ζ) Is Unimodal in ζ

the firm is risk neutral when the monetary income is high (higher than ∆ in this

case), while it tends to be risk-averse when the monetary income is low. In other

words, the firm is less risk-averse when it becomes richer, which is to some extent

consistent with the property of decreasing absolute risk aversion.

Directly applying the above general analysis to our comprehensive model in Sec-

tion 3.4.3, however, is quite difficult. First, in our model both the decision x and the

random factor ζ are multi-dimension vectors: x refers to (BT , F T ), and ζ refers to

the entire mean forecast evolution space M . Second, F itself is the value function

of a constrained stochastic optimization, and potentially all the derivative investi-

gation involves langrangian formulation. Therefore, in the dissertation we resort to

numerical analysis to evaluate the impact of risk aversion.
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Proofs

Proof of Lemma 2.4.1: We prove the lemma using an inductive argument. At the

final stage N , we have J̃N(x̃N , ỹN) + GN(ỹN)

= max
x̃N≤x̃

�
N
≤x̃

��
N

E
�
− (pN − 0)(ỹN + ε

2

N
+ µN − x̃

�
N

)+ − cf (x̃
�
N
− x̃N)− cb(x̃

��
N
− x̃

�
N

)

−chx̃
�
N
− δcu(ỹN + ε

2

N
+ µN − x̃

�
N

)+

�
+ pN ỹN + EpN(ε2

N
+ µN)

= max
x̃N≤x̃

�
N
≤x̃

��
N

E
�
pN min{ỹN + ε

2

N
+ µN , x̃

�
N
}− cf (x̃

�
N
− x̃N)− cb(x̃

��
N
− x̃

�
N

)− chx̃
�
N

−δcu(ỹN + ε
2

N
+ µN − x̃

�
N

)+

�

= JN(x̃N , ỹN).

Now, assume the relation holds for period n + 1, n < N ; that is,

J̃n+1(x̃n+1, ỹn+1) + Gn+1(ỹn+1) = Jn+1(x̃n+1, ỹn+1).

Then J̃n(x̃n, ỹn) + Gn(ỹn)

= max
x̃n≤x̃�n≤x̃��n

E
�
− (pn − δpn+1)(ỹn + ε

2

n
+ µn − x̃

�
n
)+ − cf (x̃

�
n
− x̃n)− cb(x̃

��
n
− x̃

�
n
)− chx̃

�
n

+ δ[Jn+1(x̃
��
n
, (ỹn + ε

2

n
+ µn − x̃

�
n
)+ + ε

1

n+1
)−Gn+1((ỹn + ε

2

n
+ µn − x̃

�
n
)+

+ ε
1

n+1
)]
�

+ Gn(ỹn)
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= max
x̃n≤x̃�n≤x̃��n

E
�
− (pn − δpn+1)(ỹn + ε

2

n
+ µn − x̃

�
n
)+ − cf (x̃

�
n
− x̃n)− cb(x̃

��
n
− x̃

�
n
)− chx̃

�
n

+ δJn+1(x̃
��
n
, (ỹn + ε

2

n
+ µn − x̃

�
n
)+ + ε

1

n+1
)− δpn+1((ỹn + ε

2

n
+ µn − x̃

�
n
)+

+ ε
1

n+1
)− δ

N�

k=n+2

δ
k−(n+1)

pkε
1

k
− δ

N�

k=n+1

δ
k−(n+1)

pk(ε
2

k
+ µk) + pnỹn

+
N�

k=n+1

δ
k−n

pkε
1

k
+

N�

k=n

δ
k−n

pk(ε
2

k
+ µk)

�

= max
x̃n≤x̃�n≤x̃��n

E
�
− pn(ỹn + ε

2

n
+ µn − x̃

�
n
)+ + pn(ỹn + ε

2

n
+ µn)− cf (x̃

�
n
− x̃n)− cb(x̃

��
n
− x̃

�
n
)

− chx̃
�
n

+ δJn+1(x̃
��
n
, (ỹn + ε

2

n
+ µn − x̃

�
n
)+ + ε

1

n+1
)
�

= Jn(x̃n, ỹn).

�
Proof of Lemma 2.4.2: Trivially, J̃N(x̃N , ỹN) is decreasing in ỹN . Let α ∈ [0, 1]

and ᾱ = 1− α. Given (x̃�
N,1

, ỹN,1) and (x̃�
N,2

, ỹN,2), since

α(ỹN,1 + ε
2

N
+ µN − x̃

�
N,1

)+ + ᾱ(ỹN,2 + ε
2

N
+ µN − x̃

�
N,2

)+

≥ ((αỹN,1 + ᾱỹN,2) + ε
2

N
+ µN − (αx̃

�
N,1

+ ᾱx̃
�
N,2

))+
,

the objective function is concave in (x̃N , ỹN , x̃�
N

, x̃��
N

). By concavity preservation under

maximization, J̃N(x̃N , ỹN) is concave in (x̃N , ỹN).

Assuming J̃n+1(x̃n+1, ỹn+1) is decreasing in ỹn+1 and concave in (x̃n+1, ỹn+1), n <

N , and given (x̃n,1, ỹn,1, x̃
�
n,1

, x̃��
n,1

) and (x̃n,2, ỹn,2, x̃
�
n,2

, x̃��
n,2

), we then have

αJ̃n+1(x̃
��
n,1

, (ỹn,1 + ε
2

n
+ µn − x̃

�
n,1

)+ + ε
1

n+1
) + ᾱJ̃n+1(x̃

��
n,2

, (ỹn,2 + ε
2

n
+ µn − x̃

�
n,2

)+ + ε
1

n+1
)

≤ J̃n+1(αx̃
��
n,1

+ ᾱx̃
��
n,2

, α(ỹn,1 + ε
2

n
+ µn − x̃

�
n,1

)+ + ᾱ(ỹn,2 + ε
2

n
+ µn − x̃

�
n,2

)+ + ε
1

n+1
)

≤ J̃n+1(αx̃
��
n,1

+ ᾱx̃
��
n,2

, ((αỹn,1 + ᾱỹn,2) + ε
2

n
+ µn − (αx̃

�
n,1

+ ᾱx̃
�
n,2

))+ + ε
1

n+1
).

The first inequality follows from the joint concavity of J̃n+1(x̃n+1, ỹn+1); the sec-

ond inequality is due to J̃n+1(x̃n+1, ỹn+1) being decreasing in its second argument

and the fact that αu+ + (1 − α)v+ ≥ (αu + (1 − α)v)+. Thus, we can claim that
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Jn+1(x̃��n, (ỹn +ε2

n
+µn− x̃�

n
)+ +ε1

n+1
) is concave in (ỹn, x̃

�
n
, x̃��

n
), hence trivially concave

in (x̃n, ỹn, x̃
�
n
, x̃��

n
) (since it does not contain x̃n). In the objective function of recursion

(2.4.2), all terms are concave in (x̃n, ỹn, x̃
�
n
, x̃��

n
), so the expectation is as well. Apply-

ing the concavity preservation theorem under maximization (Topkis, 1978:314), we

conclude that the value function J̃n(x̃n, ỹn) is concave in (x̃n, ỹn). Also, due to the

fact that pn > δpn+1, we have that J̃n(x̃n, ỹn) decreases in ỹn. This completes the

induction. �
Proof of Proposition 2.4.3: The result follows directly from Lemma 2.4.1 and

Lemma 2.4.2. �
Proof of Propositions 2.4.4-2.4.6: By Proposition 2.4.3, we know that Vn(x̃n, ỹn, x̃

�
n
,

x̃��
n
) is concave in (x̃�

n
, x̃��

n
). Thus, we can define SF

n
and SB

n
(we temporarily suppress

the state parameter ỹn for expositional simplicity) as:

(SF

n
, S

B

n
) = arg max

0≤x̃�n≤x̃��n
Vn(x̃n, ỹn, x̃

�
n
, x̃

��
n
). (B.0.1)

The claim that SF

n
≤ SB

n
follows directly from the constraint that x̃�

n
≤ x̃��

n
. When

x̃n ≤ SF

n
, the optimal expand-to capacity levels (x̃�

n
, x̃��

n
) are equal to (SF

n
, SB

n
). For

x̃n > SF

n
, we show x̃�

n
= x̃n via a contradiction argument. Assume that (κ�

n
, x̃��

n
) are

the optimal expand-to capacity positions where x̃��
n
≥ κ�

n
> x̃n. We must have

Vn(x̃n, ỹn, κ
�
n
, x̃

��
n
) ≤ Vn(x̃n, ỹn, S

F

n
, S

B

n
)

due to the global optimality of (SF

n
, SB

n
). Also, since SF

n
< x̃n < κ�

n
, there exists some

θ ∈ [0, 1] with θ̄ = 1− θ, such that x̃n = θSF

n
+ θ̄κ�

n
. Further letting κ��

n
= θSB

n
+ θ̄x̃��

n
,

we have

Vn(x̃n, ỹn, x̃n, κ
��
n
) = Vn(x̃n, ỹn, θS

F

n
+ θ̄κ

�
n
, θS

B

n
+ θ̄x̃

��
n
)

≥ θVn(x̃n, ỹn, S
F

n
, S

B

n
) + θ̄Vn(x̃n, ỹn, κ

�
n
, x̃

��
n
)

≥ Vn(x̃n, ỹn, κ
�
n
, x̃

��
n
),

which contradicts the fact that (κ�
n
, x̃��

n
) are the optimal expand-to capacity positions.

Therefore, it must be the case that κ�
n

= x̃n, i.e., x̃�
n

= x̃n for x̃n > SF

n
. We conclude

that a state-dependent base-stock policy is optimal for the flexible source.
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For the base source, we have already shown that it is optimal to expand the

capacity position to SB

n
when x̃n ≤ SF

n
. Since demand is finite, there must exist

a capacity value SB

n
≥ SF

n
such that no base orders will be placed when x̃n > SB

n
.

For x̃n ∈ (SF

n
, SB

n
], the following counterexample shows that the optimal expand-to

capacity position may depend on both x̃n and ỹn.

Example. Assume there are only two periods and that demand in each period is

deterministic with value 30. cf is sufficiently large so that the base supplier is the

only choice, with a leadtime of one period. If at the beginning of period 1 we have

zero on-hand capacity, then, anticipating that all the demand in period 1 will be

backlogged into the next period, we will expand the capacity position to 60 to satisfy

the total demand of 60 units in period 2. Suppose instead at the beginning of period

1, there are 20 units of on-hand capacity. Then only 10 units of demand of period 1

will not be satisfied and hence will be backlogged into period 2, rendering period 2’s

total demand to 40 units. Given this, it is now optimal to order 20 units of capacity

and expand the capacity position to 40, instead of 60 as in the previous scenario.

We have demonstrated that in this case, the optimal expand-to capacity position is

decreasing in the initial capacity position within a certain range. Hence, we prove

that a base-stock policy cannot be optimal for the base source.

Now, it remains to show how the (partial) base-stock levels SF

n
(ỹn) and SB

n
(ỹn)

are dependent on the state ỹn. We rearrange Equation (2.4.2) as follows:

max
x̃n≤x̃�n≤x̃��n

E
�
− (pn − δpn+1)(ỹn − x̃

�
n

+ ε
2

n
+ µn)+ + (cf − cb + ch)(ỹn − x̃

�
n
) + cf (x̃n

−ỹn)− cb(x̃
��
n
− ỹn)− chỹn + δJ̃n+1(x̃

��
n
, (ỹn − x̃

�
n

+ ε
2

n
+ µn)+ + ε

1

n+1
)
�
.

(B.0.2)

Also recall that

(SF

n
(0), SB

n
(0)) = arg max

0≤x̃�n≤x̃��n
Vn(x̃n, 0, x̃

�
n
, x̃

��
n
).

Note that in Equation (B.0.2), ỹn− x̃�
n

can be treated as one quantity. As we change

ỹn by a certain amount, the optimal value of x̃�
n

in Equation (B.0.1), namely SF

n
(ỹn),

should shift by exactly the same amount, as long as the newly reached value would
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not exceed the previous optimal value of x̃��
n
. Within this range, SB

n
(ỹn) is inde-

pendent of ỹn. Hence, when ỹn ≤ SB

n
(0)− SF

n
(0), we have SF

n
(ỹn) = SF

n
(0) + ỹn and

SB

n
(ỹn) = SB

n
(0). Via an analogous rearrangement for period N , SF

N
(ỹN) = SF

N
(0)+ỹN

always holds. �

Proof of Proposition 2.4.7: For the ease of analysis, we rewrite the DP recursion

of the two-period problem in the following cascade form:

J̃1(x̃1, ỹ1) = max
x̃
�
1≥x̃1

g1(x̃
�
1
, x̃1, ỹ1), (B.0.3)

g1(x̃
�
1
, x̃1, ỹ1) = −(p1 − δp2)E(ỹ1 + ε

2

1
+ µ1 − x̃

�
1
)+ − (cf + ch − cb)x̃

�
1

+cf x̃1 + max
x̃
��
1≥x̃

�
1

Γ1(x̃
�
1
, x̃

��
1
, ỹ1), (B.0.4)

Γ1(x̃
�
1
, x̃

��
1
, ỹ1) = δEJ̃2(x̃

��
1
, (ỹ1 + ε

2

1
+ µ1 − x̃

�
1
)+ + ε

1

2
)− cbx̃

��
1
, (B.0.5)

and finally,

J̃2(x̃2, ỹ2) = max
x̃
�
2≥x̃2

g2(x̃
�
2
, x̃2, ỹ2), (B.0.6)

g2(x̃
�
2
, x̃2, ỹ2) = −(p2 + δcu)E(ỹ2 + ε

2

2
+ µ2 − x̃

�
2
)+ − (cf + cu)x̃

�
2
+ cf x̃2.(B.0.7)

Claim 1: g2(x̃�2, x̃2, ỹ2) is decreasing in ỹ2, concave and supermodular in (x̃�
2
, ỹ2).

The decreasing property is obvious. To see concavity, note that the plus function (·)+

is convex, and the other terms are linear. To see supermodularity, we apply Topkis’s

Theorem by directly checking the cross-partials1:

g
(1)

2
(x̃�

2
, x̃2, ỹ2) = (p2 + δcu)[1− Φε

2
2
(x̃�

2
− µ2 − ỹ2)]− (cf + cu) (B.0.8)

Since the above partial derivative is increasing in ỹ2, supermodularity is verified.

Claim 2: J̃2(x̃2, ỹ2) is decreasing in ỹ2, concave and supermodular in (x̃2, ỹ2).

Again, it’s trivial to show the decreasing property. Concavity also follows directly

from the concavity preservation theorem under maximization. To see the supermod-

ularity of J̃2, let S(ỹ2) represent the unconstrained maximizer of g2 (since x̃2 only

appears in a linear term, it does not affect the optimal solution); we know S(ỹ2) is

1Superscript (k) denotes taking derivative with respect to the kth argument



www.manaraa.com

APPENDIX B. PROOFS 113

increasing in ỹ2 due to the supermodularity of g2. Therefore, we have

J̃2(x̃2, ỹ2) =

�
g2(S(ỹ2), x̃2, ỹ2), if S(ỹ2) ≥ x̃2

g2(x̃2, x̃2, ỹ2), if S(ỹ2) < x̃2

(B.0.9)

J̃
(1)

2
(x̃2, ỹ2) =

�
0, if S(ỹ2) ≥ x̃2

g
(1)

2
(x̃2, x̃2, ỹ2), if S(ỹ2) < x̃2

(B.0.10)

We must show J̃
(1)

2
(x̃2, ỹ2) is increasing in ỹ2. Because g2(x̃�2, x̃2, ỹ2) is supermodular

in (x̃�
2
, ỹ2), the only unobvious case is when ỹ2 increases such that S(ỹ2) crosses the

line from below x̃2 to above x̃2. Hence, we must prove that g
(1)

2
(x̃2, x̃2, ỹ2) ≤ 0 for

S(ỹ2) < x̃2. This holds since g2 is concave, g
(1)

2
(S(ỹ2), x̃2, ỹ2) = 0, and x̃2 > S(ỹ2).

Claim 3: Γ1(x̃�1, x̃
��
1
, ỹ1) is concave, submodular in (x̃�

1
, x̃��

1
), and supermodular in

(x̃��
1
, ỹ1).

The concavity of Γ1 can be shown following an argument similar to the proof of

Lemma 2.4.2. To verify sub- and super-modularity, we apply both Topkis’s Theorem

and Fubini’s Theorem:

Γ(2)

1
(x̃�

1
, x̃

��
1
, ỹ1) = δEJ̃

(1)

2
(x̃��

1
, (ỹ1 + ε

2

1
+ µ1 − x̃

�
1
)+ + ε

1

2
)− cb, (B.0.11)

which is decreasing in x̃�
1

and increasing in ỹ1 since J̃2 is supermodular. Hence,

Γ1(x̃�1, x̃
��
1
, ỹ1) is submodular in (x̃�

1
, x̃��

1
) and supermodular in (x̃��

1
, ỹ1). Therefore, the

unconstrained optimal solution of Γ1, i.e., the unconstrained optimal base expand-to

capacity position x̃��
1

is decreasing in x̃�
1

and hence decreasing in x̃1, since x̃�
1

= x̃1 in

this region. �

Proof of Proposition 2.5.1: Notice that any optimal solution to either one of the

single-source capacity expansion problems must also be a feasible solution to the dual-

source capacity expansion problem (setting all decisions associated with the unused

supplier to be zero). �
Proof of Proposition A.1.1: We prove the concavity results using induction.

JN+1(x, y) = cuy is obviously concave since it is linear. Assume Jn+1 is concave

for n ≤ N , then Jn+1(x��, z−ε2

n
−ε1

n+1
) is concave in (x��, z) hence concave in z. Since
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min(ε2

n
, z) is also concave in z and all the other linear terms do not affect concav-

ity, the only unobvious case is the concavity of the piecewise function gn(x��, z, y) on

the entire interval z ∈ [y, y + x�] for y < 0 and x� ≥ |y|, i.e., whether gn(x��, z, y) is

continuously differentiable at z = 0; but this is true since:

lim
z→0+

∂gn(x��, z, y)

∂z
= lim

z→0+

pn(1− Φε2
n
(z))− cz +

∂EJn+1(x��, z − ε2

n
− ε1

n+1
)

∂z
|z=0

= pn − cz +
∂EJn+1(x��, z − ε2

n
− ε1

n+1
)

∂z
|z=0 (ε2

n
> 0 a.s.)

= lim
z→0−

∂gn(x��, z, y)

∂z
; (B.0.12)

lim
z→0+

∂g2

n
(x��, z, y)

∂z2
= lim

z→0+

−pnφε2
n
(z) +

∂EJ2

n+1
(x��, z − ε2

n
− ε1

n+1
)

∂z2
|z=0

=
∂EJ2

n+1
(x��, z − ε2

n
− ε1

n+1
)

∂z2
|z=0 (ε2

n
> 0 a.s.)

= lim
z→0−

∂g2

n
(x��, z, y)

∂z2
. (B.0.13)

Hence, the objective function of vn(x, x�, x��, y) is concave; and because y ≤ z ≤ y+x�

is a convex set, we have vn is also concave due to the concavity preservation theorem

under maximization. Similarly, since vn(x, x�, x��, y) is concave, γ(x, x�, x��, y) is affine,

and x ≤ x� ≤ x�� is a convex set, we conclude that Jn(x, y) is concave, completing the

induction. With concavity, the modified base-stock policy follows. �
Proof of Proposition A.1.2: Assume for the purpose of contradiction that when

x� > x, we have z < y+x�. Then according to Equation (A.1.2), (A.1.3), and (A.1.4),

through decreasing x� by ∆ while keeping x�� and z unchanged, we can strictly in-

crease the expected profit by (cf −cb +ch)∆ > 0. We would keep doing so until either

z = y + x�, confirming the claim, or x� = x, violating the premise. �

Proof of Proposition 3.3.1: We claim that the equivalent linear program is given

in the following format (subscript j here represents the j-th monte carlo sample path;

for ease of exhibition, we do not display the decision variables �s1,··· ,N ;j under the
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maximization operator):

maximize
�B1,··· ,N ; �F1,··· ,N

lim
M→∞

1

M

M�

j=1

�
N�

i=1

δ
i{pisi,j − cbBi − cfFi − chki}− δ

N+1
cud

rem

N+1,j

�

subject to si,j ≤ ki for i = 1, · · · , N ; j = 1, · · · , M (B.0.14)

si,j ≤ di,j + d
rem

i,j
for i = 1, · · · , N ; j = 1, · · · , M (B.0.15)

d
rem

i,j
= di−1,j + d

rem

i−1,j
− si−1,j,

for i = 1, · · · , N ; j = 1, · · · , M ; with d
rem

1,j
= 0 (B.0.16)

and constraints (3.3.3), (3.3.4), (3.3.6)− (3.3.8)

Comparing the above linear program with the original stochastic program, we

observe several differences: (i) We rewrite the objective function using the sample

average approximation, which is a standard way to solve stochastic programs. (ii)

We replace the original min(·, ·) operator in constraint (3.3.2) with the two inequality

constraints (B.0.14) and (B.0.15). To justify this transformation, we only need to

show that at the optimal solution, either (B.0.14) or (B.0.15) will be binding. This

condition is equivalent to the argument that in the optimal solution the firm has no

incentive to deliberately withhold its production and backorder some demand into

the next period, which is obvious since the profit margin is decreasing over time. (iii)

We replace the original constraint (3.3.5) containing the (·)+ operator with the new

linear constraint (B.0.16), which is a common technique. �
Proof of Proposition 3.3.2: (i) We prove this result using a simple contradiction

argument. When solving stage n’s problem, assume that for a certain period m ≥
n + Lb > n + Lf (no orders have been committed for period m yet), the optimal

solution B∗
m

and F ∗
m

satisfy that B∗
m

= bm ≥ 0 and F ∗
m

= fm > 0. Then under the

condition that BT and F T are not binding, by changing the solution to B̂m = bm +fm

and F̂m = 0, we will still be able to satisfy all the constraints while strictly improve

the objective function (3.3.1), since cb(bm + fm) < cbbm + cffm. This contradicts the

optimality of B∗
m

and F ∗
m

, and hence we must have F ∗
m

= 0. (ii) The number of free

decision variables during period n, Ξb and Ξf , can be identified based on Figure 3.5

as well as part (i) of Proposition 3.3.2. �
Proof of Proposition 3.3.3: From Proposition 3.3.1 we know that the objective
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function of the execution problem (2) is linear in decisions �B and �F , and therefore

trivially concave in ( �B, �F, BT , F T ). Also notice that the constraint set is a convex

set. Hence, applying the concavity preservation theorem under maximization (or

convexity preservation under minimization) (Heyman and Sobel 1984, p. 525), we

know that the value function of the execution problem Jm(BT , F T , �µm,�σm) (and thus

the objective function of the reservation problem) is concave in (BT , F T ). To see

coerciveness, notice that the objective function value of (3.3.10) goes to negative

infinity as BT or F T tends to infinity, given that demand is finite. �
Proof of Proposition A.2.1: Since f(x, ζ) is concave in x, g(·) is concave and

increasing, we know that both Eζf(x, ζ) and Eζg(f(x, ζ)) are concave in x. By first

order condition and the interchange of integral and differentiation (Cheng 2010), we

have that

∂Eζf(x, ζ)

∂x
|x=x∗ = Eζf

(1)(x∗, ζ) = Eζf
(1)(x∗, ζ)If (1)(x∗,ζ)≥0

+Eζf
(1)(x∗, ζ)If (1)(x∗,ζ)<0 = 0. (B.0.17)

and that x̂∗ ≥ x∗ if and only if ∂Eζg(f(x,ζ))

∂x
|x=x∗ = Eζg

�(f(x∗, ζ))f (1)(x∗, ζ) ≥ 0; x̂∗ ≤ x∗

if and only if ∂Eζg(f(x,ζ))

∂x
|x=x∗ = Eζg

�(f(x∗, ζ))f (1)(x∗, ζ) ≤ 0 (Here a superscript (i)

means the partial derivative with respect to the i-th argument; I(·) represents the

indicator function).

Case (i)&(ii): Note that the submodularity (supermodularity) of f(x, ζ) implies

that f (1)(x, ζ) is decreasing (increasing) in ζ. Let ζ∗ be such that f (1)(x∗, ζ∗) = 0, then

f (1)(x∗, ζ) ≥ 0 implies that ζ ≤ (≥)ζ∗, which further suggests that f(x∗, ζ) ≤ f(x∗, ζ∗)

(since f(x, ζ) is increasing (decreasing) in ζ) and g�(f(x∗, ζ)) ≥ g�(f(x∗, ζ∗)) ≥ 0 (since

g(·) is concave increasing). Similarly, f (1)(x∗, ζ) < 0 implies that ζ ≥ (≤)ζ∗, which

further suggests that f(x∗, ζ) ≥ f(x∗, ζ∗) (since f(x, ζ) is increasing (decreasing) in

ζ) and g�(f(x∗, ζ∗)) ≥ g�(f(x∗, ζ)) ≥ 0. Therefore, we have that

Eζg
�(f(x∗, ζ))f (1)(x∗, ζ)

= Eζg
�(f(x∗, ζ))f (1)(x∗, ζ)If (1)(x∗,ζ)≥0 + Eζg

�(f(x∗, ζ))f (1)(x∗, ζ)If (1)(x∗,ζ)<0

≥ Eζg
�(f(x∗, ζ∗))f (1)(x∗, ζ)If (1)(x∗,ζ)≥0 + Eζg

�(f(x∗, ζ∗))f (1)(x∗, ζ)If (1)(x∗,ζ)<0

= g
�(f(x∗, ζ∗))[Eζf

(1)(x∗, ζ)If (1)(x∗,ζ)≥0 + Eζf
(1)(x∗, ζ)If (1)(x∗,ζ)<0] = 0. (B.0.18)
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This implies that x̂∗ = arg maxx Eζg(f(x, ζ)) ≥ x∗.

Case (iii)&(iv): The submodularity (supermodularity) of f(x, ζ) implies that

f (1)(x, ζ) is decreasing (increasing) in ζ. Let ζ∗ be such that f (1)(x∗, ζ∗) = 0, then

f (1)(x∗, ζ) ≥ 0 implies that ζ ≤ (≥)ζ∗, which further suggests that f(x∗, ζ) ≥ f(x∗, ζ∗)

(since f(x, ζ) is decreasing (increasing) in ζ) and g�(f(x∗, ζ∗)) ≥ g�(f(x∗, ζ)) ≥ 0 (since

g(·) is concave increasing). Similarly, f (1)(x∗, ζ) < 0 implies that ζ ≥ (≤)ζ∗, which

further suggests that f(x∗, ζ) ≤ f(x∗, ζ∗) (since f(x, ζ) is decreasing (increasing) in

ζ) and g�(f(x∗, ζ)) ≥ g�(f(x∗, ζ∗)) ≥ 0. Therefore, we have that

Eζg
�(f(x∗, ζ))f (1)(x∗, ζ)

= Eζg
�(f(x∗, ζ))f (1)(x∗, ζ)If (1)(x∗,ζ)≥0 + Eζg

�(f(x∗, ζ))f (1)(x∗, ζ)If (1)(x∗,ζ)<0

≤ Eζg
�(f(x∗, ζ∗))f (1)(x∗, ζ)If (1)(x∗,ζ)≥0 + Eζg

�(f(x∗, ζ∗))f (1)(x∗, ζ)If (1)(x∗,ζ)<0

= g
�(f(x∗, ζ∗))[Eζf

(1)(x∗, ζ)If (1)(x∗,ζ)≥0 + Eζf
(1)(x∗, ζ)If (1)(x∗,ζ)<0]

= 0. (B.0.19)

This implies that x̂∗ = arg maxx Eζg(f(x, ζ)) ≤ x∗. �
Proof of Corollary A.2.2: We demonstrate below how to derive Case (vi) based

on Case (ii), and the other cases should be similar. Note that Case (vi) corresponds

to Scenario A in Figure A.1(a). Let ζ̂ be the mode of f(x∗, ζ∗), ζ � ∈ [ζ̂, ζ̄] be such

that f(x∗, ζ �) = f(x∗, ζ) = ∆. Since g(f) is concave increasing for f < ∆ and linear

increasing for f ≥ ∆, we know g�(f) is positive decreasing for f < ∆ and positive

constant for f ≥ ∆. Combining this with the fact that f(x∗, ζ) is less than ∆ and

decreasing for ζ ≥ ζ �, we know that g�(f(x∗, ζ)) is weakly increasing in ζ. Now, still

let ζ∗ be such that f (1)(x∗, ζ∗) = 0; given the supermodularity of f(x, ζ), we then

know f (1)(x∗, ζ) ≥ 0 implies that ζ ≥ ζ∗ and hence g�(f(x∗, ζ)) ≥ g�(f(x∗, ζ∗)), and

f (1)(x∗, ζ) < 0 implies that ζ < ζ∗ and hence g�(f(x∗, ζ)) < g�(f(x∗, ζ∗)). Following

the same logic of Equation B.0.19, we can obtain that Eζg
�(f(x∗, ζ))f (1)(x∗, ζ) ≥ 0,

and therefore x̂∗ ≥ x∗. �

Proof of Proposition 4.4.1: Denote Π̂S(Λ) = EΠS(Λ)−kV arΠS(Λ) = wΛ+µs(K−
Λ)−cK−k(K−Λ)2σ2

s
. The first order derivative is ∂Π̂S(Λ)

∂Λ
= (w−µs)+2kσ2

s
(K−Λ),

with a zero given by Λ̂ = K− µs−w

2kσ2
s

. The second order derivative is ∂
2Π̂S(Λ)

∂Λ2 = −2kσ2

s
≤
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0, confirming the concavity of the objective function. Hence, Λ̂ is the optimal deci-

sion if and only if 0 ≤ K − µs−w

2kσ2
s

< K, which corresponds to µs ∈ (w, w + 2kσ2

s
K].

Therefore the result follows. �

Proof of Proposition 4.4.2: Still, we need to check the first and second derivative

of the objective function:

∂EΠS(Λ)

∂Λ
= (w − µs + ρ

σs

σd

µd)(1− Φd(Λ))− ρ
σs

σd

� ∞

Λ

xφd(x)dx, (B.0.20)

∂2EΠS(Λ)

∂Λ2
= −(w − µs + ρ

σs

σd

µd)φd(Λ) + ρ
σs

σd

Λφd(Λ)

= [ρ
σs

σd

(Λ− µd)− (w − µs)]φd(Λ). (B.0.21)

Obviously, ∂
2EΠS(Λ)

∂Λ2 ≤ 0 if and only if ρ
σs

σd

(Λ− µd)− (w − µs) ≤ 0.

Case (i): If ρ ≥ 0, ∂
2EΠS(Λ)

∂Λ2 ≤ 0 implies Λ ≤ µd + (w−µs)σd

ρσs

. Hence EΠS(Λ) is

concave-convex on interval [0, K] (purely concave if K ≤ µd + (w−µs)σd

ρσs

). Now, we

claim that on the potential convex interval where ρ
σs

σd

(Λ − µd) ≥ w − µs, EΠS(Λ)

must be decreasing. To see this, note that

∂EΠS(Λ)

∂Λ
= (w − µs + ρ

σs

σd

µd)(1− Φd(Λ))− ρ
σs

σd

� ∞

Λ

xφd(x)dx

≤ (w − µs + ρ
σs

σd

µd)(1− Φd(Λ))− ρ
σs

σd

� ∞

Λ

Λφd(x)dx

= [w − µs − ρ
σs

σd

(Λ− µd)](1− Φd(Λ))

≤ 0 (B.0.22)

Also, when µd is large enough so that φd(0) ≈ 0, we have limΛ→0

∂EΠS(Λ)

∂Λ
= (w−µs +

ρ
σs

σd

µd)(1− Φd(0))− ρ
σs

σd

�∞
0

xφd(x)dx ≈ w − µs + ρ
σs

σd

µd − ρ
σs

σd

µd = w − µs.

Therefore, if w ≥ µs, we know that EΠS(Λ) starts with a concave increasing

segment, and hence the maximizer is given by min(K, Λ̂), where Λ̂ is the solution to

the first order condition; if w < µs, however, we know that EΠS(Λ) is monotonically

decreasing on [0, K], and hence 0 is the maximizer.

Case (ii): If ρ < 0, ∂
2EΠS(Λ)

∂Λ2 ≤ 0 implies Λ ≥ µd + (w−µs)σd

ρσs

. Hence EΠS(Λ) is

convex-concave on interval [0, K] (purely convex if K ≤ µd + (w−µs)σd

ρσs

). Applying an
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analysis symmetric to (B.0.22), we can show EΠS(Λ) must be increasing on its concave

interval. Therefore, we conclude that EΠS(Λ) is actually quasi-convex and thus an

extreme policy is optimal. In particular, if µs ≤ w, then EΠS(Λ) is monotonically

increasing and Λ = K is optimal. �
Proof of Proposition 4.4.3: Since the objective function EΠS(Λ) is continuous and

twice differentiable, we apply Topkis’s Theorem to investigate the comparative statics

property. Recall that ∂EΠS(Λ)

∂Λ
= (w − µs + ρ

σs

σd

µd)(1− Φd(Λ))− ρ
σs

σd

�∞
Λ

xφd(x)dx; we

thus have

∂2EΠS(Λ)

∂Λ∂w
= 1− Φd(Λ) ≥ 0;

∂2EΠS(Λ)

∂Λ∂µd

= ρ
σs

σd

(1− Φd(Λ)) ≥ 0;

∂2EΠS(Λ)

∂Λ∂µs

= −(1− Φd(Λ)) ≤ 0;

∂2EΠS(Λ)

∂Λ∂σd

= −ρ
σs

σ2

d

µd(1− Φd(Λ)) + ρ
σs

σ2

d

� ∞

Λ

xφd(x)dx

≥ −ρ
σs

σ2

d

µd(1− Φd(Λ)) + ρ
σs

σ2

d

Λ

� ∞

Λ

φd(x)dx

= (Λ− µd)ρ
σs

σ2

d

µd(1− Φd(Λ))

≥ 0 (if Λ ≥ µd);

∂2EΠS(Λ)

∂Λ∂σs

=
ρ

σd

µd(1− Φd(Λ))− ρ

σd

� ∞

Λ

xφd(x)dx

≤ ρ

σd

µd(1− Φd(Λ))− ρ

σd

Λ

� ∞

Λ

φd(x)dx

= (µd − Λ)
ρ

σd

(1− Φd(Λ))

≤ 0 (if Λ ≥ µd);

∂2EΠS(Λ)

∂Λ∂ρ
=

σs

σd

µd(1− Φd(Λ))− σs

σd

� ∞

Λ

xφd(x)dx

≤ σs

σd

µd(1− Φd(Λ))− σs

σd

Λ

� ∞

Λ

φd(x)dx

= (µd − Λ)
σs

σd

(1− Φd(Λ))

≤ 0 (if Λ ≥ µd).
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�
Proof of Lemma 4.5.2: We know that r(z) ≥ r(x) for z ∈ [x, M ] due to IFR.

Therefore,

r(x)

�
M

x

(1− Φ(z))dz =

�
M

x

r(x)

r(z)
φ(z)dz ≤

�
M

x

φ(z)dz = 1− Φ(x),

which implies that r(x) ≤ 1−Φ(x)R
M

x
(1−Φ(z))dz

. �

Proof of Proposition 4.5.3: To prove the quasiconvexity of ΠS(Λ), it is sufficient

to verify the following four claims: (i) ΠS(Λ) is convex for Λ close to zero; (ii) If

ΠS(Λ) is concave on an interval, it has to be increasing on this interval; (iii) ΠS(Λ) is

a constant function for a sufficiently large Λ; (iv) The first order derivative of ΠS(Λ)

is continuous. To start, we first derive the first order derivative and the second order

derivative of ΠS(Λ). Note that ΠS(Λ) can be explicitly written as

ΠS(Λ) = ED,�[(w − c) min(D, Λ) + θ(a + b(D − Λ)+ + �− c)(D − Λ)+]

= (w − c)E min(D, Λ) + θ(a− c)E(D − λ)+ + θb

�
M

Λ

(x− Λ)2
dΦ(x).

The first order derivative is given by

ΠS(Λ)� = (w − c)(1− Φ(Λ))− θ(a− c)(1− Φ(Λ))− 2θb(M − Λ−
�

M

Λ

Φ(x)dx)

= (w − θa− θ̄c)(1− Φ(Λ))− 2θb

�
M

Λ

(1− Φ(x))dx; (B.0.23)

and the second order derivative can be further derived as

ΠS(Λ)�� = 2θb(1− Φ(Λ))− (w − θa− θ̄c)φ(Λ). (B.0.24)

Claim (i): For Λ close to zero, we have φ(Λ) = Φ(Λ) = 0, and ΠS(Λ)��|Λ→0 =

2θb ≥ 0, which implies that ΠS(Λ) is convex in this region.

Claim (ii): Assume ΠS(Λ) is concave on interval I; then we know that ΠS(Λ)�� =

2θb(1 − Φ(Λ)) − (w − θa − θ̄c)φ(Λ) ≤ 0 for Λ ∈ I, which implies (w − θa − θ̄c) ≥
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2θb(1−Φ(Λ))

φ(Λ)
. Hence, we know the first order derivative

ΠS(Λ)� = (w − θa− θ̄c)(1− Φ(Λ))− 2θb

�
M

Λ

(1− Φ(x))dx

≥ 2θb(1− Φ(Λ))2

φ(Λ)
− 2θb

�
M

Λ

(1− Φ(x))dx

= 2θb(1− Φ(Λ))[
1− Φ(Λ)

φ(Λ)
−

�
M

Λ
(1− Φ(x))dx

1− Φ(Λ)
] ≥ 0,

where the last step is based on Lemma 4.5.2. Therefore, ΠS(Λ) is also increasing on

interval I.

Claim (iii): Obviously, for Λ > M , we have ΠS(Λ) = (w − c)µd constant.

Claim (iv): This can be verified by checking the first order derivative expressed

in Equation (B.0.23).

The above four points together imply that ΠS(Λ) is quasiconvex on [0,∞]. �

Proof of Proposition 4.5.4: According to Proposition 4.5.3, the quasiconvex-

ity of ΠS(Λ) implies that the maximum value is attained at the boundary of the

domain. Hence, we only need to compare ΠS(0) with ΠS(∞), where ΠS(0) =

θ(a − c)µd + θb(µ2

d
+ σ2

d
), and ΠS(∞) = (w − c)µd, and let Ξ = ΠS(0) − ΠS(∞).

�

Proof of Proposition 4.5.6: Buyer i’s objective function (4.5.6) can be rewritten

as

ΠBi(qi, �q−i) = pmµi − wqi − (a + b

�

j �=i

E(Dj − qj)
+)E(Di − qi)

+ − bE[(Di − qi)
+]2.

The first order derivative with respect to qi is derived as

∂ΠBi(qi, �q−i)

∂qi

= (a + b

�

j �=i

E(Dj − qj)
+)(1− Φi(qi)) + 2b

�
Mi

qi

(1− Φi(x))dx− w;

(B.0.25)
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the second order derivative with respect to qi is given by

∂2ΠBi(qi, �q−i)

∂q2
i

= −(a + b

�

j �=i

E(Dj − qj)
+)φi(qi)− 2b(1− Φi(qi)) ≤ 0; (B.0.26)

and the cross-partial with respect to (qi, qj) is given by

∂2ΠBi(qi, �q−i)

∂qi∂qj

= −b(1− Φi(qi))(1− Φj(qj)) ≤ 0. (B.0.27)

From (B.0.26) we conclude that ΠBi(qi, �q−i) is concave in qi. From (B.0.27) we

conclude that ΠBi(qi, �q−i) is submodular in (qi, qj) for j �= i. The unconstrained

maximizer q̂i(�q−i) can be implicitly obtained by setting (B.0.25) equal to zero. �
Proof of Proposition 4.5.8: First, due to symmetry, the unconstrained optimizer

q̂ can be obtained through replacing all the qj’s in Equation (4.5.7) with q̂, leading

to the new F.O.C. given by Equation (4.5.8). Next, to show that the constrained

maximizer q∗ is given by min(q̂, Λ), we discuss two cases:

Case (i): Λ ≥ q̂. Obviously, q∗ = q̂ = min(q̂, Λ) since q̂ is the unconstrained optimizer;

Case (ii): Λ < q̂. For any buyer i, we claim q∗
i

= Λ. To see this, we know that for all

j �= i, q∗
j
≤ Λ < q̂; and Proposition 4.5.6 says ΠBi(qi, �q−i) is submodular in (qi, qj),

which implies the unconstrained maximizer q̂i(�q−i) is decreasing in qj for all j �= i.

Combining these two facts, the new unconstrained maximizer q̂�
i

for buyer i facing

q∗
j
(≤ Λ < q̂) should satisfy q̂�

i
(�q∗−i

) ≥ q̂i(�̂q−i) = q̂, which together with concavity

implies that the constrained maximizer q∗
i

= Λ. Applying symmetry, we then have

for all buyers q∗ = Λ = min(q̂, Λ). �
Proof of Proposition 4.5.9: First let’s show the convexity of Π̂S(Λ). Equation

(4.5.11) can be expanded and rewritten as

Π̂S(Λ) = (w − c)NΛ + θ(a− c)
N�

i=1

E(Di − Λ)+ + θbE(
N�

i=1

(Di − Λ)+)2

= (w − c)NΛ + θ(a− c)
N�

i=1

E(Di − Λ)+ + θb

N�

i=1

�

j �=i

E(Di − Λ)+E(Dj − Λ)+

+θb

N�

i=1

E((Di − Λ)+)2
.
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The first order derivative with respect to Λ is given by

Π̂S(Λ)� = (w − c)N − θ(a− c)N(1− Φ(Λ))− 2N(N − 1)θb(1− Φ(Λ))E(D − Λ)+

−2Nθb

�
M

Λ

(1− Φ(x))dx, (B.0.28)

and the second order derivative is given by

Π̂S(Λ)�� = θ(a− c)Nφ(Λ) + 2N(N − 1)θb(φ(Λ)E(D − Λ)+ + (1− Φ(Λ))2)

+2Nθb(1− Φ(Λ)). (B.0.29)

We can see that when a ≥ c, Π̂S(Λ)�� ≥ 0 holds, which implies Π̂S(Λ) is indeed

convex. Considering also the fact that ΠS(Λ) is constant for Λ ≥ q̂, we can conclude

that ΠS(Λ) is quasiconvex on [0,∞). �

Proof of Proposition 4.5.10: This claim follows directly from the quasiconvex-

ity result. To determine the optimal withholding policy, the supplier only needs to

compare the expected profits at the two ends, Π̂S(0) and Π̂S(q̂), where Π̂S(0) =

Nθ(Nbµ2

d
+ (a− c)µd + bσ2

d
) by plugging zero into Equation (4.5.11). �

Proof of Proposition 4.5.11: Notice that Equation (4.5.17) is a standard quadratic

function of ΛS with negative initial coefficient. Hence the conclusion directly follows.

�
Proof of Proposition 4.5.12: The global optimizer Λ̂S can be achieved if and only

if

1

2g
(a + b(D − Λ)+ − c) ≤ K −min(D, Λ), (B.0.30)

If D < Λ, then Condition (B.0.30) is equivalent to D ≤ K − a−c

2g
, hence for both

D ≤ Λ ≤ K − a−c

2g
(case (i)) and D ≤ K − a−c

2g
< Λ (case (iv)), we have that

Λ∗
S

= Λ̂S = 1

2g
(a− c); and for K − a−c

2g
< D ≤ Λ (case (v)), we have Λ∗

S
= K −D.

If D ≥ Λ, then 1

2g
(a + b(D − Λ) − c) ≤ K − Λ implies that D ≤ 1

b
(2gK − (2g −

b)Λ− (a− c)), which is possible if and only if Λ ≤ 1

b
(2gK − (2g− b)Λ− (a− c)), i.e.,

Λ ≤ K − a−c

2g
. Hence, when 0 ≤ Λ ≤ K − a−c

2g
holds, Λ∗

S
= Λ̂S = 1

2g
(a + b(D−Λ)− c)

if Λ < D ≤ 1

b
(2gK − (2g − b)Λ − (a − c)) (case (ii)), and Λ∗

S
= K − Λ if D >
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1

b
(2gK− (2g− b)Λ− (a− c)) (case (iii)). When K− a−c

2g
< Λ ≤ K, however, we must

have 1

2g
(a + b(D − Λ)− c) > K − Λ, and thus Λ∗

S
= K − Λ (case (vi)). �

Proof of Proposition 4.5.13: Since the explicit expression of Π1

S
(Λ) depends on

the range of Λ, we start by checking the properties of both Π1

S,1
(Λ) (Equation 4.5.21)

and Π1

S,2
(Λ) (Equation 4.5.22).

The first order derivative of Π1

S,1
(Λ) with respect to Λ is derived as

Π1

S,1
(Λ)�

= (w − c)(1− Φ(Λ))− h +
(a− c)2

4g
φ(Λ)

+

� 1
b
(2gK−(2g−b)Λ−(a−c))

Λ

− b

2g
(a + b(x− Λ)− c)φ(x)dx

+(1− 2g

b
)g(k − Λ)2

φ(
1

b
(2gK − (2g − b)Λ− (a− c)))− (a− c)2

4g
φ(Λ)

+

�
M

1
b
(2gK−(2g−b)Λ−(a−c))

[2(b− g)Λ + 2gK − b(x + K)− (a− c)]φ(x)dx

−(1− 2g

b
)g(k − Λ)2

φ(
1

b
(2gK − (2g − b)Λ− (a− c)))− (a− c)2

4g
φ(Λ)

= (w − c)(1− Φ(Λ))− h−
� 1

b
(2gK−(2g−b)Λ−(a−c))

Λ

b

2g
(a + b(x− Λ)− c)φ(x)dx

+

�
M

1
b
(2gK−(2g−b)Λ−(a−c))

[2(b− g)Λ + 2gK − b(x + K)− (a− c)]φ(x)dx.

(B.0.31)

The second order derivative of Π1

S,1
with respect to Λ is given by

Π1

S,1
(Λ)��

= −(w − c)φ(Λ) +

� 1
b
(2gK−(2g−b)Λ−(a−c))

Λ

b2

2g
dx

−(1− 2g

b
)b(K − Λ)φ(

1

b
(2gK − (2g − b)Λ− (a− c))) +

b

2g
(a− c)φ(Λ)

+

�
M

1
b
(2gK−(2g−b)Λ−(a−c))

2(b− g)φ(x)dx
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+(1− 2g

b
)b(K − Λ)φ(

1

b
(2gK − (2g − b)Λ− (a− c))) +

b

2g
(a− c)φ(Λ)

= (
b

2g
(a− c)− (w − c))φ(Λ)− 2(g − b)[1− Φ(

1

b
(2gK − (2g − b)Λ− (a− c)))]

+
b2

2g
[Φ(

1

b
(2gK − (2g − b)Λ− (a− c)))− Φ(Λ)].

(B.0.32)

Similarly, the first order derivative of Π1

S,2
(Λ) with respect to Λ is derived as

Π1

S,2
(Λ)� = (w − c)(1− Φ(Λ))− h +

�
M

Λ

[2(b− g)Λ

+2gK − b(x + K)− (a− c)]φ(x)dx. (B.0.33)

The second order derivative of Π1

S,2
(Λ) with respect to Λ is given by

Π1

S,2
(Λ)�� = −[(2g − b)(K − Λ) + (w − a)]φ(Λ)− 2(g − b)(1− Φ(Λ)). (B.0.34)

Since when Λ = K − a−c

2g
we have 1

b
(2gK − (2g − b)Λ− (a− c)) = K − a−c

2g
= Λ,

it can be shown that Π1

S,1
(K − a−c

2g
) = Π1

S,2
(K − a−c

2g
) and that Π1

S,1
(Λ)�|

Λ=K−a−c

2g

=

Π1

S,2
(Λ)�|

Λ=K−a−c

2g

. Therefore, we know that function Π1

S
(Λ) is continuous and smooth

on its domain.

Next, we investigate how the signs of Π1

S,1
(Λ)�� and Π1

S,2
(Λ)�� change with the value

of Λ. Since b ≤ g and a ≤ w, the first term of Π1

S,1
(Λ)��, i.e., ( b

2g
(a− c)− (w− c))φ(Λ),

is always negative. The remaining terms of Π1

S,1
(Λ)��, i.e., ΓS,1(Λ) = −2(g − b)[1 −

Φ(1

b
(2gK − (2g − b)Λ− (a− c)))] + b

2

2g
[Φ(1

b
(2gK − (2g − b)Λ− (a− c)))−Φ(Λ)], are

decreasing in Λ given the fact that g ≥ b. In particular, note that ΓS,1(K − a−c

2g
) =

−2(g − b)Φ(K − a−c

2g
) ≤ 0.

Assumption B.0.3. The demand pdf φ(·) is unimodal and its mode mD satisfies

ΓS,1(mD) ≤ 0.

One sufficient condition that leads to the above assumption is K − a−c

2g
≤ mD,

which, according to our numerical analysis later on, is a very reasonable one. Now,

we define Λ̇ = min(mD, K − a−c

2g
), and, since φ(Λ) is increasing on interval [0, Λ̇), we
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can safely argue that Π1

S,1
(Λ)�� is monotonically decreasing to negative on [0, Λ̇) and

that it remains negative on interval [Λ̇, K − a−c

2g
].

When Λ ∈ (K − a−c

2g
, K], we switch to Π1

S,2
(Λ)��. Note that Π1

S,2
(Λ)�� ≤ 0 holds

trivially when b ≤ g and a ≤ w.

Therefore, we can now conclude the supplier’s expected profit function Π1

S
(Λ)

is convex-concave in Λ on interval [0, K] with at most one interior maximizer Λ̂,

which would be the unique solution to either Π1

S,1
(Λ)� = 0, (Λ ∈ [0, K − a−c

2g
]) or

Π1

S,2
(Λ)� = 0, (Λ ∈ (K − a−c

2g
, K]). �

Proof of Proposition 4.5.15: We first demonstrate the monotonicity of the po-

tential interior maximizer Λ̂. Since the objective function is continuous and twice

differentiable, we apply Topkis’s Theorem to investigate the comparative statics.

Let Λ̂1 and Λ̂2 denote the two zeros of Π1

S,1
(Λ)� and Π1

S,2
(Λ)�, respectively; that is,

Π1

S,1
(Λ̂1)� = 0 and Π1

S,2
(Λ̂2)� = 0.

∂2Π1

S,1

∂Λ∂a
= −

� 1
b
(2gK−(2g−b)Λ−(a−c))

Λ

b

2g
φ(x)dx−

�
M

1
b
(2gK−(2g−b)Λ−(a−c))

φ(x)dx ≤ 0;

∂2Π1

S,2

∂Λ∂a
= −

�
M

Λ

φ(x)dx = −(1− Φ(Λ)) ≤ 0;

∂2Π1

S,1

∂Λ∂b
= −

� 1
b
(2gK−(2g−b)Λ−(a−c))

Λ

a + 2b(x− Λ)− c

2g
φ(x)dx

−
�

M

1
b
(2gK−(2g−b)Λ−(a−c))

(x + K − 2Λ)φ(x)dx ≤ 0;

∂2Π1

S,2

∂Λ∂b
= −

�
M

Λ

(x + K − 2Λ)φ(x)dx ≤ 0;

∂2Π1

S,1

∂Λ∂g
=

� 1
b
(2gK−(2g−b)Λ−(a−c))

Λ

b

2g2
(a + b(x− Λ)− c)φ(x)dx

+

�
M

1
b
(2gK−(2g−b)Λ−(a−c))

2(K − Λ)φ(x)dx ≥ 0;

∂2Π1

S,2

∂Λ∂g
=

�
M

Λ

(2K − 2Λ)φ(x)dx = 2(K − Λ)(1− Φ(Λ)) ≥ 0;

∂2Π1

S,1

∂Λ∂w
=

∂2Π1

S,2

∂Λ∂w
= (1− Φ(Λ)) ≥ 0;
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∂2Π1

S,1

∂Λ∂c
= −(1− Φ(Λ)) +

b

2g

� 1
b
(2gK−(2g−b)Λ−(a−c))

Λ

φ(x)dx

+

�
M

1
b
(2gK−(2g−b)Λ−(a−c))

φ(x)dx

= −(1− b

2g
)[Φ(

1

b
(2gK − (2g − b)Λ− (a− c)))− Φ(Λ)] ≤ 0;

∂2Π1

S,2

∂Λ∂c
= −(1− Φ(Λ)) + 1− Φ(Λ) = 0;

∂2Π1

S,1

∂Λ∂h
=

∂2Π1

S,2

∂Λ∂h
= −1 ≤ 0.

We have shown that both Λ̂1 and Λ̂2 are decreasing in a, b, c, h and increasing in g,

w; hence, Λ̂ will naturally have the same property.

The monotonicity of profit values Π1

S
(Λ̂), Π1

S
(0), and Π1

S
(K) is more straightfor-

ward: they are in general increasing in parameters on the revenue side (a, b, w, etc.)

and decreasing in parameters on the cost side (g, c, h, etc.), with the exception that

Π1

S
(0) is irrelevant with w and h (Equation 4.5.24), and Π1

S
(K) is irrelevant with a,

b, and g (Equation 4.5.25). �
Proof of Proposition 4.5.16: Facing a deterministic demand D, the supplier’s

first stage quantity decision Λ will not exceed D. Applying Proposition 4.5.11, the

supplier’s optimal spot market quantity is given by Λ∗
S

= min(a+b(D−Λ)−c

2g
, K − Λ).

When a+b(D−Λ)−c

2g
≤ K − Λ, i.e., Λ ≤ 2gK−(a+bD−c)

2g−b
, we need to further compare

D with 2gK−(a+bD−c)

2g−b
: D ≤ 2gK−(a+bD−c)

2g−b
if and only if D ≤ K − a−c

2g
. Hence, when

D ≤ K − a−c

2g
, we have Λ ≤ D ≤ 2gK−(a+bD−c)

2g−b
, and Λ∗

S
= a+b(D−Λ)−c

2g
; when D >

K − a−c

2g
, however, we have Λ∗

S
= a+b(D−Λ)−c

2g
if Λ ≤ 2gK−(a+bD−c)

2g−b
, and Λ∗

S
= K − Λ if

2gK−(a+bD−c)

2g−b
< Λ ≤ D.

Now, let’s look at the supplier’s first stage problem. If D ≤ K − a−c

2g
, then the

supplier is solving the following maximization in the first stage:

π
1

S
= max

0≤Λ≤D

Π1

S
(Λ) = max

0≤Λ≤D

(w − c− h)Λ +
(a + b(D − Λ)− c)2

4g
.

Since [S.O.C.] =
∂
2Π1

S
(Λ)

∂Λ2 = b
2

2g
≥ 0, we know Π1

S
is convex and hence the optimal

solution is of an extreme type. Specifically, we compare Π1

S
(0) = (a+bD−c)2

4g
with
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Π1

S
(D) = (w − c − h)D + (a−c)2

4g
and obtain that ΠS(0) ≤ ΠS(D) if and only if

D ≤ 4g(w−c−h)−2b(a−c)

b2
. Therefore, when D ≤ min(4g(w−c−h)−2b(a−c)

b2
, K − a−c

2g
), we have

Λ∗ = D and Λ∗
S

= a+b(D−D)−c

2g
= a−c

2g
(case (i)); when 4g(w−c−h)−2b(a−c)

b2
< D ≤ K− a−c

2g
,

we have Λ∗ = 0 and Λ∗
S

= a+bD−c

2g
(case (ii)).

If D > K − a−c

2g
, however, the supplier is solving the following optimization:

π
1

S
= max{ max

0≤Λ≤ 2gK−(a+bD−c)
2g−b

Π1

S,1
(Λ), max

2gK−(a+bD−c)
2g−b

<Λ≤D

Π1

S,2
(Λ)},

where Π1

S,1
(Λ) = (w − c − h)Λ + (a+b(D−Λ)−c)2

4g
and Π1

S,2
(Λ) = (w − c − h)Λ + (a +

b(D − Λ)− g(K − Λ)− c)(K − Λ).

We already showed previously that Π1

S,1
(Λ) is convex. Now, let’s check the prop-

erty of Π1

S,2
(Λ):

[F.O.C.]
∂Π1

S,2
(Λ)

∂Λ
= (w − c− h) + (2g − b)K − (a + bD − c)− 2(g − b)Λ;

[S.O.C.]
∂2Π1

S,2
(Λ)

∂Λ2
= −2(g − b) ≤ 0.

Therefore, we can see that Π1

S,2
(Λ) is actually concave under the condition that g ≥ b.

By setting [F.O.C.]= 0, we obtain the interior maximizer Λ̂ = (w−c−h)+(2g−b)K−(a+bD−c)

2(g−b)
,

which can be achieved if and only if Λ̂ ∈ [2gK−(a+bD−c)

2g−b
, D], which further translates

into a condition that

K − a + h− w

2g − b
≤ D ≤ K − a− c

b
+

(2g − b)(w − c− h)

b2
.

Hence, based on the convex-concave structure of the objective function, if max(K−
a−c

2g
, K − a+h−w

2g−b
) ≤ D ≤ K − a−c

b
+ (2g−b)(w−c−h)

b2
, which means the interior maxi-

mizer is attainable, we only need to compare Π1

S,1
(0) = (a+bD−c)2

4g
with Π1

S,2
(Λ̂) =

(w − c − h)Λ̂ + (a + b(D − Λ̂) − g(K − Λ̂) − c)(K − Λ̂). If Π1

S,1
(Λ̂) ≥ Π1

S,1
(0), then

Λ∗ = Λ̂ and Λ∗
S

= K − Λ̂; if else, then Λ∗ = 0 and Λ∗
S

= a+bD−c

2g
(case (iii)).

Otherwise if Λ̂ is not attainable, we only need to compare Π1

S,1
(0) = (a+bD−c)2

4g

with Π1

S,2
(D) = (w − c − h)D + (a − g(K −D) − c)(K −D). If Π1

S,1
(D) ≥ Π1

S,1
(0),

then Λ∗ = D and Λ∗
S

= K −D; if else, then Λ∗ = 0 and Λ∗
S

= a+bD−c

2g
(case (iv)). �
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Proof of Proposition 4.5.17: Since this is a stochastic setting, we base our analysis

on the general discussion in Section 4.5.2. Before start, we make an observation about

the integral divider 1

b
(2gK − (2g − b)Λ− (a− c)) in Equation (4.5.21):

1

b
(2gK − (2g − b)Λ− (a− c))






∈ [0, DL), for Λ > γ2

∈ [DL, DH), for Λ ∈ (γ1, γ2]

∈ [DH ,
1

b
(2gK − (a− c))], for Λ ≤ γ1

(B.0.35)

First, we consider γ1 ≤ DL. For Λ ≤ γ1(< K − a−c

2g
), we know Λ ≤ DL < DH ≤

1

b
(2gK − (2g − b)Λ− (a− c)) from Equation (B.0.35); and hence based on Equation

(4.5.21), the supplier’s first stage expected profit is

Π1

S
(Λ) = (w − c− h)Λ +

1

4g
[p(a + b(DH − Λ)− c)2 + p̄(a + b(DL − Λ)− c)2]

= (w − c− h)Λ +
bµd

2g
(a− c− bΛ) +

(a− c− bΛ)2

4g
+

b2

4g
(pD2

H
+ p̄D

2

L
).

(B.0.36)

Since
∂Π1

S
(Λ)

∂Λ
= (w − c − h) − b

2
µd

2g
− b

2g
(a − c − bΛ) and

∂
2Π1

S
(Λ)

∂Λ2 = b
2

2g
≥ 0, we know

Π1

S
(Λ) is convex on [0, γ1].

Now for γ1 < Λ ≤ DL(≤ K − a−c

2g
≤ γ2), we have Λ ≤ DL ≤ 1

b
(2gK − (2g− b)Λ−

(a− c)) < DH , and hence

Π1

S
(Λ) = (w − c− h)Λ +

p̄

4g
(a + b(DL − Λ)− c)2

+p(K − Λ)[a + b(DH − Λ)− g(K − Λ)− c]. (B.0.37)

[F.O.C.]
∂Π1

S
(Λ)

∂Λ
= (w − c− h)− p(a + bDH − c− (2g − b)K)

−p̄
b

2g
(a + bDL − c) + [p̄

b2

2g
− 2p(g − b)]Λ; (B.0.38)

[S.O.C.]
∂2Π1

S
(Λ)

∂Λ2
= −2p(g − b) + (1− p)

b2

2g
. (B.0.39)

We have
∂
2Π1

S
(Λ)

∂Λ2 ≤ 0, i.e., Π1

S
(Λ) being concave on [γ1, DL], if and only if p ≥
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( b

2g−b
)2; and by setting

∂Π1
S
(Λ)

∂Λ
= 0, we have the unconstrained optimizer Λ̂2 =

2g[(w−c−h)−p(a+bDH−c−(2g−b)K)]−p̄b(a+bDL−c)

4pg(g−b)−p̄b2
, which can only be attained if it is within

[γ1, DL]. If p ≤ ( b

2g−b
)2, however, we know Π1

S
(Λ) continues to be convex on [γ1, DL].

For DL < Λ ≤ K− a−c

2g
(≤ γ2), we have DL ≤ 1

b
(2gK− (2g− b)Λ− (a− c)) < DH ;

this together with the case in which (DL ≤)K − a−c

2g
≤ Λ ≤ DH both lead to the

following expected profit function:

Π1

S
(Λ) = (w − c)(pΛ + p̄DL)− hΛ +

p̄

4g
(a− c)2

+p(K − Λ)[a + b(DH − Λ)− g(K − Λ)− c] (B.0.40)

[F.O.C.]
∂Π1

S
(Λ)

∂Λ
= p[w − a− b(DH − Λ) + (2g − b)(K − Λ)]− h; (B.0.41)

[S.O.C.]
∂2Π1

S
(Λ)

∂Λ2
= −2p(g − b) ≤ 0. (B.0.42)

Hence, we know that Π1

S
(Λ) is concave on interval (DL, DH ]; by setting

∂Π1
S
(Λ)

∂Λ
= 0, we

have the unconstrained optimizer Λ̂1 = p(w−a−bDH+(2g−b)K)−h

2p(g−b)
, which can be achieved

if it is within (DL, DH ].

One can further verify that Π1

S
(Λ) is smooth at every point but Λ = DL, where

the left derivative is bigger than the right derivative by p̄(w− c− b

2g
(a− c)) > 0 and

thus a spike might exist. Therefore, Case (i) in Proposition 4.5.17 follows based on

the above results. We summarize the supplier’s expected profit function here for the

reference in the proposition.

Π1

S
(Λ) =






(w − c− h)Λ +
bµd

2g
(a− c− bΛ) +

(a− c− bΛ)2

4g
+

b2

4g
(pD2

H
+ p̄D

2

L
),

for Λ ∈ [0, γ1]

(w − c− h)Λ +
p̄

4g
(a + b(DL − Λ)− c)2

+p(K − Λ)[a + b(DH − Λ)− g(K − Λ)− c], for Λ ∈ (γ1, DL]

(w − c)(pΛ + p̄DL)− hΛ +
p̄

4g
(a− c)2

+p(K − Λ)[a + b(DH − Λ)− g(K − Λ)− c], for Λ ∈ (DL, DH ]
(B.0.43)
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One can prove the case of γ1 > DL following a very similar process. We also

provide the supplier’s expected profit function for this case below as a reference.

Π1

S
(Λ) =






(w − c− h)Λ +
bµd

2g
(a− c− bΛ) +

(a− c− bΛ)2

4g
+

b2

4g
(pD2

H
+ p̄D

2

L
),

for Λ ∈ [0, DL]

(w − c)(pΛ + p̄DL)− hΛ +
p̄

4g
(a− c)2 +

p

4g
(a + b(DH − Λ)− c)2

,

for Λ ∈ (DL, γ1]

(w − c)(pΛ + p̄DL)− hΛ +
p̄

4g
(a− c)2

+p(K − Λ)[a + b(DH − Λ)− g(K − Λ)− c], for Λ ∈ (γ1, DH ]
(B.0.44)

�
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Appendix C

DMEP Algorithm Flow Chart

Notations

BaseTotal: the total reservation quantity with the base mode;

FlexTotal: the total reservation quantity with the flexible mode;

BaseOrders: order quantities from the base mode for different periods under different

monte carlo iterations;

FlexOrders: order quantities from the flexible mode for different periods under dif-

ferent monte carlo iterations;

ActSales: actual demand satisfied in each period;

IncmDmd: incoming demand in each period;

CumuDmd: cumulated demand (incoming demand plus previous backorder) in each

period;

RemnDmd: remaining unsatisfied demand at the end of each period;

CumuCap: cumulated capacity position at the beginning of each period;

Profit: expected profit for each period;

ProfitOpt: expected total profit across the planning horizon;

Margin: unit profit margin (before the equipment cost is taken out) of the product;

BaseResvPrc: unit reservation price for the base mode;

FlexResvPrc: unit reservation price for the flexible mode;

BaseExePrc: unit execution price for the base mode;

FlexExePrc: unit execution price for the flexible mode;

HoldPrc: unit holding cost of the equipment;
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PenltPrc: unit penalty cost for the unmet demand after the entire planning horizon

ends;

SerLev: service level target.

1. The Input/Output Module

This module is the user-interface where the capacity manager feeds the values of

the basic parameters to the heuristic model, the optimization package (here we use

CVX) is called and the optimal decision (reservation levels and order quantities) is

outputted. Figure C.1 demonstrates the algorithm of the I/O Module.

Simulation Algorithm

1

 High Level Structure 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 I/O Module:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B

Initialize Model Parameters (profit margin, costs, initial demand forecasts, service level, etc.)

Variable: BaseTotal, FlexTotal, BaseOrders, FlexOrders, ActSales,
CumuDmd, RemnDmd, CumuCap, Profit, ProfitOpt, ProfitOptAve
Objective: Maximize ProfitOptAve

Subject to.

Exit.
Output the optimal BaseTotal, FlexTotal

Start Optimization

End Optimization

The I/O Module

The I/O Module 
Input parameters, call the optimization, 

and output the optimal reservation 
levels or order quantities

The Reservation Module 
Monte Carlo on demand mean 

evolution, call execution module, and 
calculate total average expected profit

The Execution Module 
Monte Carlo on demand scenarios, 
calculate order quantities and total 
profits across the selling horizon

Figure C.1: Flow Diagram of the I/O Module

Step I.1. Initialize all the parameters: the contract costs (unit reservation price,

unit execution price), the capacity costs (unit holding cost, additional penalty cost),

the profit margin, the potential constraints (service level constraint and ramp-up

constraint), the initial demand forecasts for all future periods and the belief about

how these forecasts could evolve, and for each period the latest demand forecasts as

well as the realized demand information. Go to Step I.2.

Step I.2. Start the optimization by defining all the (intermediate) decision variables:

total reservation quantities for base and flexible modes, base orders and flexible or-

ders for every period under each potential monte carlo iteration, actual sales per
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period, cumulated demand per period, remaining unmet demand per period, profits

corresponding to each selling period and also the entire selling horizon; and ascer-

taining the objective function: to maximize the average expected total profit across

the six-period selling horizon. Go to Step R.1. in the reservation module.

Step I.3. Once quit from the reservation module, end the optimization and output

the optimal reservation levels and order quantities for base and flexible modes. Also

report the maximum expected total profit across the selling horizon.

2. The Reservation Module

Figure C.2 below demonstrates the algorithm of the Reservation Module.

Simulation Algorithm

2

 
Step I.1. Initialize the parameters in the problem: initial demand forecasts, costs (reservation,

execution, holding, penalty, etc.),profit margins, service level, etc.. Go to Step I.2.
Step I.2. Start the optimization in CVX by defining all the (intermediate) decision variables:

total reservation quantities for base and flex modes, base orders and flex orders for
every period under each potential monte carlo iteration, actual sales per period,
cumulated demand per period, remaining unmet demand per period, profits
corresponding to each selling period and also the entire selling horizon; and
ascertaining the objective function: to maximize the average expected total profit
across the six period selling horizon. Go to Step R.1. in the reservation module.

Step I.3. Once quit from the reservation module, end the optimization and output the optimal
Reservation levels for base and flex modes.

                
 
 
 
 Reservation Module: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step R.1. If the Monte Carlo iteration on demand mean evolution ends, calculate the average

expected total profit by averaging the total profits for different mean evolution paths
and subtracting the reservation costs for total base and flex quantities reserved
(refer to equations and constraints in box r.1), then quit the reservation module and
go to Step I.3; otherwise go to Step R.2.

Step R.2. Generate a demand mean evolution (including demand realization for planning
periods on the selling horizon) path and go to Step E.1.

 
 
 
 

The Reservation Module

Generate a demand mean evolution/demand realization path

Demand mean evolution
Monte Carlo ends?

Yes
ProfitOptAve = sum(ProfitOpt_mN)/M �–

BaseResvPrc*BaseTotal �–
FlexResvPrc* FlexTotal

BaseTotal, FlexTotal >= 0
BaseOrders, FlexOrders >= 0No m++

A B

D

C

r.1

Figure C.2: Flow Diagram of the Reservation Module

Step R.1. If the Monte Carlo iteration on demand mean evolution ends, calculate

the average expected total profit by averaging the total profits for different mean

evolution paths and subtracting the reservation costs for the total base and flexible

quantities reserved (refer to equations and constraints in box r.1), then quit the

reservation module and go to Step I.3; otherwise go to Step R.2.

Step R.2. Generate a demand mean evolution (including demand realization for

planning periods in the selling horizon) path and go to Step E.1.

3. The Execution Module

Figure C.3 below demonstrates the algorithm of the Execution Module.
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Simulation Algorithm

3

 
 Execution Module:

Step E.1. If the decision horizon ends, quit the execution module and go to Step R.1.;
otherwise move to the next planning period and go to Step E.2.

Step E.2. If the Monte Carlo iteration on demand scenarios ends, calculate the
expected total profit (when standing at a particular planning period) by averaging the
profits obtained during each Monte Carlo iteration (refer to equation in box e.2.),
then return to Step E.1.; otherwise go to Step E.3.

Step E.3. Generate demand scenarios for future periods according to the demand mean values
obtained in Step R.2.; recall the previously made order decisions up to the current
planning period. Go to Step E.4.

Step E.4. Calculate the profit for each demand period based on/subject to the balance
equations and constraints in box e.4.; once done, calculate the total profit of the
entire selling horizon based on/subject to the equations and constraints in box e.5.
Return to Step E.2.

C

D

ProfitSum_k = sum(Profit_i)�–
RemnDmd_final*PenltPrc

sum(BaseOrders)<=BaseTotal
sum(FlexOrders) <=FlexTotal

Generate demand scenarios for future
periods according to the mean and c.v.;
inherit previously made order decisions

Decision horizon ends?
Yes

No n++

Demand scenario
monte carlo ends?

Yes

No

Six period selling
horizon ends?

Yes No
i++

CumuCap =sum(BaseOrders + FlexOrders)
CumuDmd = RemnDmd_pre + IncmDmd
ActSales = min(CumuCap, CumuDmd)
RemnDmd = CumuDmd �– ActSales
ActSales�–RemnDmd_pre>= IncmDmd*SerLev
Profit_i = Margin*ActSales �– BaseExePrc*

BaseOrder �– FlexExePrc*FlexOrder �–
HoldPrc *CumuCap

ProfitOpt_mn = sum(ProfitSum_k)/K

for every period i,k++

The Execution Module

e.2

e.4e.5

Figure C.3: Flow Diagram of the Execution Module

Step E.1. If the decision horizon ends, quit the execution module and go to Step

R.1.; otherwise, move to the next planning period and go to Step E.2.

Step E.2. If the Monte Carlo iteration on demand scenarios ends, calculate the

expected total profit (when standing at a particular planning period) by averaging

the profits obtained during each Monte Carlo iteration (refer to equation in box e.2.),

then return to Step E.1.; otherwise, go to Step E.3.

Step E.3. Generate demand scenarios for future periods according to the demand

mean values obtained in Step R.2.; recall the previously made order decisions up to

the current planning period. Go to Step E.4.

Step E.4. Calculate the profit for each demand period based on/subject to the bal-

ance equations and constraints in box e.4.; once done, calculate the total profit of the

entire selling horizon based on/subject to the equations and constraints in box e.5.

Return to Step E.2.
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